4 research outputs found

    Early Detection of COVID-19 in Female Athletes Using Wearable Technology

    Get PDF
    Background: Heart rate variability (HRV), respiratory rate (RR), and resting heart rate (RHR) are common variables measured by wrist-worn activity trackers to monitor health, fitness, and recovery in athletes. Variations in RR are observed in lower-respiratory infections, and preliminary data suggest changes in HRV and RR are linked to early detection of COVID-19 infection in nonathletes. Hypothesis: Wearable technology measuring HRV, RR, RHR, and recovery will be successful for early detection of COVID-19 in NCAA Division I female athletes. Study Design: Cohort study. Level of Evidence: Level 2. Methods: Female athletes wore WHOOP, Inc. bands through the 2020 to 2021 competitive season. Of the athletes who tested positive for COVID (n = 33), 14 had enough data to be assessed (N = 14; 20.0 ± 1.3 years; 69.8 ± 7.2 kg; 172.0 ± 8.3 cm). Roughly 2 weeks of noninfected days were used to set baseline levels of HRV, RR, recovery, and RHR to compare with -3, -2, and -1 days before a positive COVID-19 result. Results: Increases in RR (P = 0.02) were detected on day -3. RHR (P \u3c 0.01) and RR increased (P \u3c 0.01), while HRV decreased (P \u3c 0.05) on day -1, compared with baseline. Differences were noted in all variables on the day of the positive COVID-19 result: decreased HRV (P \u3c 0.05) and recovery scores (P \u3c 0.01), and increased RHR (P \u3c 0.01) and RR (P \u3c 0.01). Conclusion: In female athletes, wearable technology was successful in predicting COVID-19 infection through changes in RR 3 days before a positive test, and also HRV and RHR the day before a positive test. Clinical Relevance: Wearable technology may be used, as part of a multifaceted approach, for the early detection of COVID-19 in elite athletes through monitoring of HRV, RR, and RHR for overall team health

    Collagen peptides supplementation improves function, pain, and physical and mental outcomes in active adults

    No full text
    Introduction Chronic pain affects 19% of adults in the United States, with increasing prevalence in active and aging populations. Pain can limit physical activity and activities of daily living (ADLs), resulting in declined mental and social health. Nutritional interventions for pain currently target inflammation or joint health, but few influence both. Collagen, the most abundant protein in the human body and constituent of the extra cellular matrix, is such a nutraceutical. While there have been reports of reductions in pain with short-term collagen peptide (CP) supplementation, there are no long-term studies specifically in healthy middle-aged active adults. Purpose To determine the effects of daily CP consumption over 3, 6, and 9 months on survey measures of pain, function, and physical and mental health using The Knee Injury & Osteoarthritis Outcomes Score (KOOS) and Veterans Rand 12 (VR-12) in middle-aged active adults. Methods This study was a double-blind randomized control trial with three treatment groups (Placebo, 10 g/d CP, and 20 g/d CP). Results Improvements in ADLs (p = .031, ηp2 = .096) and pain (p = .037, ηp2 = .164) were observed with 10 g/d CP over 6 months, although pain only improved in high frequency exercisers (>180 min/week). Additionally, VR-12 mental component scores (MCS) improved with 10 g/d of CP over 3–9 months (p = .017, ηp2 = .309), while physical component scores (PCS) improved with 20 g/d of CP over 3-9 months, but only in females (p = .013, ηp2= .582). Conclusion These findings suggest 10 to 20 g/d of CP supplementation over 6 to 9 months may improve ADLs, pain, MCS, and PCS in middle-aged active adults

    440 Muscle Protein Synthesis and Whole-Body Protein Balance Following Ingestion of Beef or a Soy Protein Based Meat Alternative

    No full text
    OBJECTIVES/GOALS: We endeavor to investigated the hypothesis that muscle protein synthesis (MPS) is stimulated more after consumption of a 4-ounce beef patty as compared to 4- and 8-ounces of a soy protein based meat alternative (SPBMA) and if a greater stimulation is related to differences in the responses of plasma essential amino acid (EAA) concentrations. METHODS/STUDY POPULATION: Participants were aged 18 to 40 years of age with a BMI between 20 and 32 kg/m2. Written informed consent was obtained from all participants, and approved by UAMS IRB. Participants were assigned to one of three intervention groups via a single-blinded permuted block randomization, stratified for sex: 4 oz beef patty; 4 oz SPBMA; 2 x 4 oz (8oz) SPBMA. The impossible burgerTM was selected as it is primarily soy protein, a high-quality plant protein, and specifically designed to mimic a beef burger. Stable isotope were infused to assess protein metabolism. Appropriate muscle and blood samples were obtained. Enrichment and plasma EAA concentrations were measured with mass spectrometry. ANOVA’s on the change from basal to postprandial were used to identify group difference, significance was accepted at p < 0.05. RESULTS/ANTICIPATED RESULTS: The MPS increase from basal to postprandial indicated a significant main effect of group (p = 0.026), with the beef group (0.020 ± 0.016%/hour) being significantly greater than the 4oz SPBMA (0.003 ± 0.010%/hour; p = 0.021) but not the 8oz PBMA group (0.013 ± 0.016%/hour; p = 0.454). Similar results were observed for whole-body protein synthesis, where the beef group (p = 0.042) and 8oz SPBMA (p = 0.033) were significantly greater than the 4oz SPBMA (p = 0.021). Whole-body protein balance was significantly greater in the 8oz SPBMA as compared to 4oz of beef and SPBMA. Lastly, we observed a significantly relationship (p = 0.046; r = 0.411) between the maximal plasma EAA concentration and change in MPS, indicating the greater rate of MPS following 4oz of beef is mediated by an higher increase in plasma EAA concentrations. DISCUSSION/SIGNIFICANCE: In conclusion, 4oz of beef stimulates muscle protein FSR more than 4oz of a SPBMA. A common SPBMA can stimulate increase in protein metabolism, however, greater amounts are required as compared to beef protein. Further, the change in the muscle protein FSR response was significantly correlated with the maximal EAA concentration

    International Society of Sports Nutrition Position Stand: Effects of essential amino acid supplementation on exercise and performance

    Get PDF
    Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of literature surrounding the effects of essential amino acid (EAA) supplementation on skeletal muscle maintenance and performance. This position stand is intended to provide a scientific foundation to athletes, dietitians, trainers, and other practitioners as to the benefits of supplemental EAA in both healthy and resistant (aging/clinical) populations. EAAs are crucial components of protein intake in humans, as the body cannot synthesize them. The daily recommended intake (DRI) for protein was established to prevent deficiencies due to inadequate EAA consumption. The following conclusions represent the official position of the Society: 1. Initial studies on EAAs’ effects on skeletal muscle highlight their primary role in stimulating muscle protein synthesis (MPS) and turnover. Protein turnover is critical for replacing degraded or damaged muscle proteins, laying the metabolic foundation for enhanced functional performance. Consequently, research has shifted to examine the effects of EAA supplementation – with and without the benefits of exercise – on skeletal muscle maintenance and performance. 2. Supplementation with free-form EAAs leads to a quick rise in peripheral EAA concentrations, which in turn stimulates MPS. 3. The safe upper limit of EAA intake (amount), without inborn metabolic disease, can easily accommodate additional supplementation. 4. At rest, stimulation of MPS occurs at relatively small dosages (1.5–3.0 g) and seems to plateau at around 15–18 g. 5. The MPS stimulation by EAAs does not require non-essential amino acids. 6. Free-form EAA ingestion stimulates MPS more than an equivalent amount of intact protein. 7. Repeated EAA-induced MPS stimulation throughout the day does not diminish the anabolic effect of meal intake. 8. Although direct comparisons of various formulas have yet to be investigated, aging requires a greater proportion of leucine to overcome the reduced muscle sensitivity known as “anabolic resistance.” 9. Without exercise, EAA supplementation can enhance functional outcomes in anabolic-resistant populations. 10. EAA requirements rise in the face of caloric deficits. During caloric deficit, it’s essential to meet whole-body EAA requirements to preserve anabolic sensitivity in skeletal muscle
    corecore