35 research outputs found
Molecular coupling of light with plasmonic waveguides
We use molecules to couple light into and out of microscale plasmonic
waveguides. Energy transfer, mediated by surface plasmons, from donor molecules
to acceptor molecules over ten micrometer distances is demonstrated. Also
surface plasmon coupled emission from the donor molecules is observed at
similar distances away from the excitation spot. The lithographic fabrication
method we use for positioning the dye molecules allows scaling to nanometer
dimensions. The use of molecules as couplers between far-field and near-field
light offers the advantages that no special excitation geometry is needed, any
light source can be used to excite plasmons and the excitation can be localized
below the diffraction limit. Moreover, the use of molecules has the potential
for integration with molecular electronics and for the use of molecular
self-assembly in fabrication. Our results constitute a proof-of-principle
demonstration of a plasmonic waveguide where signal in- and outcoupling is done
by molecules.Comment: 9 pages, 5 figure
Trapping of 27 bp - 8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis
Dielectrophoretic trapping of six different DNA fragments, sizes varying from
the 27 to 8416 bp, has been studied using confocal microscopy. The effect of
the DNA length and the size of the constriction between nanoscale fingertip
electrodes on the trapping efficiency have been investigated. Using finite
element method simulations in conjunction with the analysis of the experimental
data, the polarizabilities of the different size DNA fragments have been
calculated for different frequencies. Also the immobilization of trapped
hexanethiol- and DTPA-modified 140 nm long DNA to the end of gold
nanoelectrodes was experimentally quantified and the observations were
supported by density functional theory calculations.Comment: 17 pages (1 column version), 8 figure
DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response
Surface plasmon resonances generated in metallic nanostructures can be
utilized to tailor electromagnetic fields. The precise spatial arrangement of
such structures can result in surprising optical properties that are not found
in any naturally occurring material. Here, the designed activity emerges from
collective effects of singular components equipped with limited individual
functionality. Top-down fabrication of plasmonic materials with a predesigned
optical response in the visible range by conventional lithographic methods has
remained challenging due to their limited resolution, the complexity of
scaling, and the difficulty to extend these techniques to three-dimensional
architectures. Molecular self-assembly provides an alternative route to create
such materials which is not bound by the above limitations. We demonstrate how
the DNA origami method can be used to produce plasmonic materials with a
tailored optical response at visible wavelengths. Harnessing the assembly power
of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2
nm into nanoscale helices. The helical structures assemble in solution in a
massively parallel fashion and with near quantitative yields. As a designed
optical response, we generated giant circular dichroism and optical rotary
dispersion in the visible range that originates from the collective
plasmon-plasmon interactions within the nanohelices. We also show that the
optical response can be tuned through the visible spectrum by changing the
composition of the metal nanoparticles. The observed effects are independent of
the direction of the incident light and can be switched by design between left-
and right-handed orientation. Our work demonstrates the production of complex
bulk materials from precisely designed nanoscopic assemblies and highlights the
potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure
Molecular devices for nanoelectronics and plasmonics
This thesis is focused on fabrication and characterization of molecular devices. In
connection with molecular electronics the dielectrophoresis based method for trapping
and attaching nanoscale double-stranded DNA between nanoelectrodes was
developed. Moreover, the method was extended to self-assembled DNA nanostructures.
The method allowed to obtain valuable information about electrical and dielectrophoretic
properties of DNA. In addition, two general approaches to the utilization
of DNA origami structures for the assembly of materials are described and
experimentally demonstrated.
In context of molecular plasmonics, a novel lithographic fabrication method for positioning
dye molecules on plasmonic waveguides was developed. The potential for
utilization of fluorescent molecules as couplers between far-field light and plasmons
in microscale waveguides was explored. Energy transfer, mediated by surface plasmons,
from donor molecules to acceptor molecules over ten micrometer distances
was demonstrated. Moreover, it was showed that beside excitation and detection,
fluorescent molecules can be used to manipulate properties of surface plasmons,
e.g., to convert the frequency of propagating plasmons
Assembly of Gold Nanorods into Chiral Plasmonic Metamolecules Using DNA Origami Templates
The inherent addressability of DNA origami structures makes them ideal templates for the arrangement of metal nanoparticles into complex plasmonic nanostructures. The high spatial precision of a DNA origami-templated assembly allows controlling the coupling between plasmonic resonances of individual particles and enables tailoring optical properties of the constructed nanostructures. Recently, chiral plasmonic systems attracted a lot of attention due to the strong correlation between the spatial configuration of plasmonic assemblies and their optical responses (e.g., circular dichroism [CD]). In this protocol, we describe the whole workflow for the generation of DNA origami-based chiral assemblies of gold nanorods (AuNRs). The protocol includes a detailed description of the design principles and experimental procedures for the fabrication of DNA origami templates, the synthesis of AuNRs, and the assembly of origami-AuNR structures. In addition, the characterization of structures using transmission electron microscopy (TEM) and CD spectroscopy is included. The described protocol is not limited to chiral configurations and can be adapted for the construction of various plasmonic architectures.Peer reviewe
A DNA origami-based device for investigating DNA bending proteins by transmission electron microscopy
The DNA origami technique offers precise positioning of nanoscale objects with high accuracy. This has facilitated the development of DNA origami-based functional nanomechanical devices that enable the investigation of DNAâprotein interactions at the single particle level. Herein, we used the DNA origami technique to fabricate a nanoscale device for studying DNA bending proteins. For a proof of concept, we used TATA-box binding protein (TBP) to evaluate our approach. Upon binding to the TATA box, TBP causes a bend to DNA of âŒ90°. Our device translates this bending into an angular change that is readily observable with a conventional transmission electron microscope (TEM). Furthermore, we investigated the roles of transcription factor II A (TF(II)A) and transcription factor II B (TF(II)B). Our results indicate that TF(II)A introduces additional bending, whereas TF(II)B does not significantly alter the TBPâDNA structure. Our approach can be readily adopted to a wide range of DNA-bending proteins and will aid the development of DNA-origami-based devices tailored for the investigation of DNAâprotein interactions.Peer reviewe
Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals
Photo-responsive nanomaterials hold great promise for realizing information processing devices, micro-machines, and biosensors. Scalable assembly of such materials using mesostructured liquids, such as liquid crystals, remains a challenge due to the poor compatibility of nanostructures and the host medium. Here we demonstrate a new type of colloidal dispersion of plasmonic DNA-origami with photo-switchable chirality in cellulose nanofiber-based liquid crystals. The composite material inherits properties of DNA-origami plasmonic nanostructures, so that the compositeâs chirality can be erased by ultraviolet light and recovered by visible light. The cellulose nanofibers provide a liquid crystalline host with weak optical birefringence, which barely affects the polarization of the incident light, so that the response is dominated by circular dichroism of uniformly dispersed plasmonic nanostructures. Our approach may serve as a new platform for scalable assembling DNA origami-templated nanomaterials.Peer reviewe
DNA Origami Route for Nanophotonics
The specificity and simplicity of the WatsonâCrick base pair interactions make DNA one of the most versatile construction materials for creating nanoscale structures and devices. Among several DNA-based approaches, the DNA origami technique excels in programmable self-assembly of complex, arbitrary shaped structures with dimensions of hundreds of nanometers. Importantly, DNA origami can be used as templates for assembly of functional nanoscale components into three-dimensional structures with high precision and controlled stoichiometry. This is often beyond the reach of other nanofabrication techniques. In this Perspective, we highlight the capability of the DNA origami technique for realization of novel nanophotonic systems. First, we introduce the basic principles of designing and fabrication of DNA origami structures. Subsequently, we review recent advances of the DNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems. We conclude by outlining the future prospects of the DNA origami technique for advanced nanophotonic systems with tailored functionalities.Peer reviewe
Reconfigurable Chiral Plasmonics beyond Single Chiral Centers
Understanding how the geometrical property of chirality is transferred into the physical properties of chiral materials is becoming increasingly important in various research fields, including plasmonics. Advances in DNA nanotechnology, especially DNA origami techniques, have enabled routine fabrication of complex chiral plasmonic assemblies. However, most of the work undertaken to date has involved plasmonic enantiomers. The concept of multiple chiral centers in stereochemistry provides simple guidelines for generating multiple chiral configurations beyond enantiomers. In this issue of ACS Nano, Wang et al. report DNA origami-based assembly and characterization of reconfigurable plasmonic chiral stereoisomers with up to three chiral centers. In this Perspective, we explore the implication of these results for further development of functional chiral plasmonic systems.Peer reviewe