36 research outputs found
Green Tribology
This chapter provides an overview of Green tribology, which is a new direction in the development of tribology, a new interesting area for scientific researches and a new way to turn tribology into a friend of ecological environment and saving energy. Green tribology is considered as well as close area with other âgreenâ disciplines like green engineering and green chemistry. In the chapter, the various aspects of green tribology such as the concept, perspectives, role and goal, main principles, primary areas, challenges and directions of the future development have been discussed. It was clarified that green tribology can be defined as an interdisciplinary field attributed to the broad induction of various concepts such as energy, materials science, green lubrication, and environmental science. The most important role and goal of green tribology is improvement of efficiency by minimizing wear and friction in tribological processes to save energy, resources and protect environment, and consequently, improve the quality of human life. The twelve principles and three areas of green tribology were analyzed. Observation of these principles can greatly reduce the environmental impact of tribological processes, assist economic development and, as a result, improve the quality of life. The integration of these areas remains the major challenge of green tribology and defines the future directions of research in this field. This work also presents a rather detailed analysis of the most important effect in green tribologyâthe âzero-wearâ effect (selective transfer effect). It was established that the âzero-wearâ effect is due to self-organization in frictional interaction in tribological systems, which is the consequence of the complex tribo-chemical reactions and physico-chemical processes occurred in the area of frictional contact, that lead to the manifestation of unique tribological characteristics: super-antifrictional (friction coefficient ~ 10â3) and without wear (intensity wear ~10â15). This condition of tribo-system was provided by a protective nanocrystalline servovite film made of soft metal with unusual combination of mechanical properties
The Study of the Composite Material Go/CF/PTFE Tribological Property
In this paper, the composite material Go/CF/PTFE tribological property was studied. The test of its mechanical property, and the fabrication of the filled PTEE composite material sample which is based on the technology of cold press molding and sinter molding proved that adding Go and CF moderately to the composite material was an efficient way to improve its mechanical property. Meanwhile the process of friction and wear trial and SEM analysis results of the micro-structure of wear pattern proved that the addition of the Go and CF tremendously improved the anti-wear property and that after the addition the plowing effect which took place on the material surface would turn into a kind of mixed wear effect that includes plowing effect and fatigue wear. Working as pinning and bridging, the Go which distributing uniformly in the matrix was able to improve the resistance and substantially resisted the crack propagation, therefore to a certain degree enhanced the intensity of composite material and prolong its lifespan
Development of a new mechano-chemical model in boundary lubrication
A newly developed tribochemical model based on thermodynamics of interfaces and kinetics of tribochemical reactions is implemented in a contact mechanics simulation and the results are validated against experimental results. The model considers both mechanical and thermal activation of tribochemical reactions instead of former thermal activation theories. The model considers tribofilm removal and is able to capture the tribofilm behaviour during the experiment. The aim of this work is to implement tribochemistry into deterministic modelling of boundary lubrication and study the effect of tribofilms in reducing friction or wear. A new contact mechanics model considering normal and tangential forces in boundary lubrication is developed for two real rough steel surfaces. The model is developed for real tribological systems and is flexible to different laboratory experiments. Tribochemistry (e.g. tribofilm formation and removal) and also mechanical properties are considered in this model. The amount of wear is calculated using a modified Archardâs wear equation accounting for local tribofilm thickness and its mechanical properties. This model can be used for monitoring the tribofilm growth on rough surfaces and also the real time surface roughness as well as changes in the λ ratio. This model enables the observation of in-situ tribofilm thickness and surface coverage and helps in better understanding the real mechanisms of wear
A Semi-deterministic Wear Model Considering the Effect of Zinc Dialkyl Dithiophosphate Tribofilm
Tribochemistry plays a very important role in the behaviour of systems in tribologically loaded contacts under boundary lubrication conditions. Previous works have mainly reported contact mechanics simulations for
capturing the boundary lubrication regime, but the real mechanism in which tribofilms reduce wear is still unclear. In this paper, the wear prediction capabilities of a recently published mechanochemical simulation approach (Ghanbarzadeh et al. in Tribol Int, 2014) are tested. The wear model, which involves a time- and spatially dependent
coefficient of wear, was tested for two additive concentrations and three temperatures at different times, and the predictions are validated against experimental results. The experiments were conducted using a mini-traction machine in a sliding/rolling condition, and the spacer layer interferometry method was used to measure the tribofilm thickness. Wear measurements have been taken using a white-light interferometry. Good agreement is seen between simulation and experiment in terms of tribofilm thickness and wear depth predictions
TECHNIQUE OF DEFINITION OF POTENTIALS OF THE ZERO CHARGE OF METALS ON SIZE OF WEAR PROCESS AT POLARIZATION WITH SIMULTANEOUS ULTRASONIC INFLUENCE
The technique of definition of potentials of a zero charge of metals on size of wear process is developed at polarization with simultaneous ultrasonic influence in a regular one-, two-nuclear spirits and glycerin