152 research outputs found

    Excitation of Longitudinal Waves in a Degenerate Isotropic Quantum Plasma

    Full text link
    A dispersion equation, which describes the interaction of low density electron beam with a degenerate electron quantum plasma, is derived and examined for some interesting cases. In addition to the instabilities similar to those for classical plasma, due to the quantum effect a new type of instability is found. Growth rates of these new modes, which are purely quantum, are obtained. Furthermore, the excitation of Bogolyubov's type of spectrum by a strong electric field is discussed.Comment: Submitted to Journal of Plasma Physics special issu

    Fluid moment hierarchy equations derived from gauge invariant quantum kinetic theory

    Full text link
    The gauge invariant electromagnetic Wigner equation is taken as the basis for a fluid-like system describing quantum plasmas, derived from the moments of the gauge invariant Wigner function. The use of the standard, gauge dependent Wigner function is shown to produce inconsistencies, if a direct correspondence principle is applied. The propagation of linear transverse waves is considered and shown to be in agreement with the kinetic theory in the long wavelength approximation, provided an adequate closure is chosen for the macroscopic equations. A general recipe to solve the closure problem is suggested.Comment: 12 pages, 1 figur

    Influence of normal and anomalous dopler effects on development of beam-plasma instability

    No full text
    The influences of normal and anomalous Dopler effects on development of a beam-plasma Cherenkov instability in the linear approximation is investigated. It is shown, that normal Dopler effect influences only on an absolute instability, leading to suppression of backward wave. The anomalous Dopler effect influences not only on absolute, but also on convection instabilities and under the certain conditions it may lead to complete suppression of Cherenkov beamplasma instability.У лінійному наближенні досліджуються впливи нормального й аномального ефектів Доплера на розвиток пучково-плазмової нестійкості Черенкова в подовжньо обмежених системах. Показано, що нормальний ефект Доплера впливає лише на абсолютну нестійкість. Він призводить до непропускання зустрічної хвилі у визначеній області частот, зриваючи тим самим абсолютну нестійкість. Аномальний же 114 ефект впливає не тільки на абсолютну, але і на конвективну нестійкість і може у визначених умовах цілком задавити пучково-плазмову нестійкість Черенкова.В линейном приближении исследуются влияния нормального и аномального эффектов Доплера на развитие пучково-плазменной черенковской неустойчивости в продольно ограниченных системах. Показано, что нормальный эффект Доплера влияет лишь на абсолютную неустойчивость. Он приводит к непропусканию встречной волны в определенной области частот, срывая тем самым абсолютную неустойчивость. Аномальный же эффект влияет не только на абсолютную, но и на конвективную неустойчивость и может в определенных условиях полностью задавить черенковскую пучково-плазменную неустойчивость

    Pairing of charged particles in a quantum plasmoid

    Full text link
    We study a quantum spherically symmetric object which is based on radial plasma oscillations. Such a plasmoid is supposed to exist in a dense plasma containing electrons, ions, and neutral particles. The method of creation and annihilation operators is applied to quantize the motion of charged particles in a self-consistent potential. We also study the effective interaction between oscillating particles owing to the exchange of a virtual acoustic wave, which is excited in the neutral component of plasma. It is shown that this interaction can be attractive and result in the formation of ion pairs. We discuss possible applications of this phenomenon in astrophysical and terrestrial plasmas.Comment: 17 pages, no figures, two columns, LaTeX2e; paper was significantly revised; title was changed; 16 new references were included; the discussion on ion-acoustic waves was added to Sec. 2; Secs. 3 and 4 were shortened; a more detailed discussion was added to Sec. 7; accepted for publication to J.Phys.

    Interaction of ultrarelativistic electron and proton bunches with dense plasmas

    Full text link
    Here we discuss the possibility of employment of ultrarelativistic electron and proton bunches for generation of high plasma wakefields in dense plasmas due to the Cherenkov resonance plasma-bunch interaction. We estimate the maximum amplitude of such a wake and minimum system length at which the maximum amplitude can be generated at the given bunch parameters.Comment: 8 page

    Experimental and Theoretical Investigation into the Effect of the Electron Velocity Distribution on Chaotic Oscillations in an Electron Beam under Virtual Cathode Formation Conditions

    Full text link
    The effect of the electron transverse and longitudinal velocity spread at the entrance to the interaction space on wide-band chaotic oscillations in intense multiple-velocity beams is studied theoretically and numerically under the conditions of formation of a virtual cathode. It is found that an increase in the electron velocity spread causes chaotization of virtual cathode oscillations. An insight into physical processes taking place in a virtual cathode multiple velocity beam is gained by numerical simulation. The chaotization of the oscillations is shown to be associated with additional electron structures, which were separated out by constructing charged particle distribution functions.Comment: 9 pages, 8 figure

    QCD in the nuclear medium and effects due to Cherenkov gluons

    Full text link
    The equations of in-medium gluodynamics are proposed. Their classical lowest order solution is explicitly shown for a color charge moving with constant speed. For nuclear permittivity larger than 1 it describes emission of Cherenkov gluons resembling results of classical electrodynamics. The values of the real and imaginary parts of the nuclear permittivity are obtained from the fits to experimental data on the double-humped structure around the away-side jet obtained at RHIC. The dispersion of the nuclear permittivity is predicted by comparing the RHIC, SPS and cosmic ray data. This is important for LHC experiments. Cherenkov gluons may be responsible for the asymmetry of dilepton mass spectra near rho-meson, observed in the SPS experiment with excess in the low-mass wing of the resonance. This feature is predicted to be common for all resonances. The "color rainbow" quantum effect might appear according to higher order terms of in-medium QCD if the nuclear permittivity depends on color.Comment: 29 p., 4 figs; for "Phys. Atom. Nucl." volume dedicated to 80th birthday of L.B. Okun; minor corrections on pp. 11 and 13 in v

    Gradient Optics of subwavelength nanofilms

    Get PDF
    Propagation and tunneling of light through subwavelength photonic barriers, formed by dielectric layers with continuous spatial variations of dielectric susceptibility across the film are considered. Effects of giant heterogeneity-induced non-local dispersion, both normal and anomalous, are examined by means of a series of exact analytical solutions of Maxwell equations for gradient media. Generalized Fresnel formulae, visualizing a profound influence of gradient and curvature of dielectric susceptibility profiles on reflectance/transmittance of periodical photonic heterostructures are presented. Depending on the cutoff frequency of the barrier, governed by technologically managed spatial profile of its refractive index, propagation or tunneling of light through these barriers are examined. Nonattenuative transfer of EM energy by evanescent waves, tunneling through dielectric gradient barriers, characterized by real values of refractive index, decreasing in the depth of medium, is shown. Scaling of the obtained results for different spectral ranges of visible, IR and THz waves is illustrated. Potential of gradient optical structures for design of miniaturized filters, polarizers and frequency-selective interfaces of subwavelength thickness is considered

    In-medium QCD and Cherenkov gluons

    Full text link
    The equations of in-medium gluodynamics are proposed. Their classical lowest order solution is explicitly shown for a color charge moving with constant speed. For nuclear permittivity larger than 1 it describes emission of Cherenkov gluons resembling results of classical electrodynamics. The choice of nuclear permittivity and Lorentz-invariance of the problem are discussed. Effects induced by the transversely and longitudinally moving (relative to the collision axis) partons at LHC energies are described.Comment: 13 p., misprints correcte
    corecore