33 research outputs found

    Active sitting with backrest support : is it feasible?

    Get PDF
    Ergonomics science recommends office chairs that promote active sitting to reduce sitting related complaints. Since current office chairs do not fulfil this recommendation, a new chair was developed by inverting an existing dynamic chair principle. This study compares active sitting on the inverted chair during a simulated computer based office task to two existing dynamic office chairs (n=8). Upper body stability was analysed using Friedman ANOVA (p=.01). Additionally, participants completed a questionnaire to rate their comfort and activity after half a working day. The inverted chair allowed the participants to perform a substantial range of lateral spine flexion (11.5°) with the most stable upper body posture (≤11mm, ≤2°, p≤0.01). The results of this study suggest that the inverted chair supports active sitting with backrest support during computer based office work. However, according to comfort and activity ratings, results should be verified in a future field study with 24 participants.ZHAW Zurich University of Applied SciencesAccepte

    Where to place which sensor to measure sedentary behaviour? A method development and comparison among various sensor placements and signal types

    Get PDF
    Background: Sedentary Behaviour (SB) is associated with several chronic diseases and especially office workers are at increased risk. SB is defined by a sitting or reclined body posture with an energy expenditure ≤1.5 METs. However, current objective methods to measure SB are not consistent with its definition. There is no consensus on which sensor placement and type to be used. Aim: To compare the accuracy of newly developed artificial intelligence models for 15 sensor placements in combination with four signal types (accelerometer only/plus gyroscope and/or magnetometer) to detect posture and physical in-/activity while desk-based activities. Method: Signal features for the model development were extracted from sensor raw data of 30 office workers performing 10 desk-based tasks, each lasting 5 minutes. Direct observation (posture) and indirect calorimetry (in-/activity) served as reference criteria. The best classification model for each sensor was identified and compared among the sensor placements, both using Friedman and post-hoc Wilcoxon tests (p≤0.05). Results: Posture was most accurately measured with a lower body sensor, while in-/activity was most accurately measured with an upper body or waist sensor. The inclusion of additional signal types improved the posture classification for some placements, while the acceleration signal already contained the relevant signal information for the in-/activity classification. Overall, the thigh accelerometer most accurately classified desk-based SB. Conclusion: This study favours, in line with previous work, the measurement of SB with a thigh worn accelerometer, and adds the information that this sensor is also accurate in measuring physical in-/activity while sitting and standing.Swiss National Science FoundationAccepte

    Detecting prolonged sitting bouts with the ActiGraph GT3X

    Get PDF
    The ActiGraph has a high ability to measure physical activity; however, it lacks an accurate posture classification to measure sedentary behavior. The aim of the present study was to develop an ActiGraph (waist-worn, 30 Hz) posture classification to detect prolonged sitting bouts, and to compare the classification to proprietary ActiGraph data. The activPAL, a highly valid posture classification device, served as reference criterion. Both sensors were worn by 38 office workers over a median duration of 9 days. An automated feature selection extracted the relevant signal information for a minute-based posture classification. The machine learning algorithm with optimal feature number to predict the time in prolonged sitting bouts (>= 5 and >= 10 minutes) was searched and compared to the activPAL using Bland-Altman statistics. The comparison included optimized and frequently used cut-points (100 and 150 counts per minute (cpm), with and without low-frequency-extension (LFE) filtering). The new algorithm predicted the time in prolonged sitting bouts most accurate (bias <= 7 minutes/d). Of all proprietary ActiGraph methods, only 150 cpm without LFE predicted the time in prolonged sitting bouts non-significantly different from the activPAL (bias <= 18 minutes/d). However, the frequently used 100 cpm with LFE accurately predicted total sitting time (bias <= 7 minutes/d). To study the health effects of ActiGraph measured prolonged sitting, we recommend using the new algorithm. In case a cut-point is used, we recommend 150 cpm without LFE to measure prolonged sitting and 100 cpm with LFE to measure total sitting time. However, both cpm cut-points are not recommended for a detailed bout analysis.NoneAccepte

    Concurrent and discriminant validity of ActiGraph waist and wrist cut-points to measure sedentary behaviour, activity level, and posture in office work

    Get PDF
    Background: Sedentary Behaviour (SB) gets an increasing attention from ergonomics and public health due to its associated detrimental health effects. A large number of studies record SB with ActiGraph counts-per-minute cut-points, but we still lack valid information about what the cut-points tell us about office work. This study therefore analysed the concurrent and discriminant validity of commonly used cut-points to measure SB, activity level, and posture. Methods: Thirty office workers completed four office tasks at three workplaces (conventional chair, activity-promoting chair, and standing desk) while wearing two ActiGraphs (waist and wrist). Indirect calorimetry and prescribed posture served as reference criteria. Generalized Estimation Equations analysed workplace and task effects on the activity level and counts-per-minute, and kappa statistics and ROC curves analysed the cut-point validity. Results: The activity-promoting chair (p < 0.001, ES ≥ 0.66) but not the standing desk (p = 1.0) increased the activity level, and both these workplaces increased the waist (p ≤ 0.003, ES ≥ 0.63) but not the wrist counts-per-minute (p = 0.74) compared to the conventional chair. The concurrent and discriminant validity was higher for activity level (kappa: 0.52–0.56 and 0.38–0.45, respectively) than for SB and posture (kappa ≤0.35 and ≤ 0.19, respectively). Furthermore, the discriminant validity for activity level was higher for task effects (kappa: 0.42–0.48) than for workplace effects (0.13–0.24). Conclusions: ActiGraph counts-per-minute for waist and wrist placement were – independently of the chosen cut-point – a measure for activity level and not for SB or posture, and the cut-points performed better to detect task effects than workplace effects. Waist cut-points were most valid to measure the activity level in conventional seated office work, but they showed severe limitations for sit-stand desks. None of the placements was valid to detect the increased activity on the activity-promoting chair. Caution should therefore be paid when analysing the effect of workplace interventions on activity level with ActiGraph waist and wrist cut-points

    Intestinal strongyloidiasis and hyperinfection syndrome

    Get PDF
    In spite of recent advances with experiments on animal models, strongyloidiasis, an infection caused by the nematode parasite Strongyloides stercoralis, has still been an elusive disease. Though endemic in some developing countries, strongyloidiasis still poses a threat to the developed world. Due to the peculiar but characteristic features of autoinfection, hyperinfection syndrome involving only pulmonary and gastrointestinal systems, and disseminated infection with involvement of other organs, strongyloidiasis needs special attention by the physician, especially one serving patients in areas endemic for strongyloidiasis. Strongyloidiasis can occur without any symptoms, or as a potentially fatal hyperinfection or disseminated infection. Th(2 )cell-mediated immunity, humoral immunity and mucosal immunity have been shown to have protective effects against this parasitic infection especially in animal models. Any factors that suppress these mechanisms (such as intercurrent immune suppression or glucocorticoid therapy) could potentially trigger hyperinfection or disseminated infection which could be fatal. Even with the recent advances in laboratory tests, strongyloidiasis is still difficult to diagnose. But once diagnosed, the disease can be treated effectively with antihelminthic drugs like Ivermectin. This review article summarizes a case of strongyloidiasis and various aspects of strongyloidiasis, with emphasis on epidemiology, life cycle of Strongyloides stercoralis, clinical manifestations of the disease, corticosteroids and strongyloidiasis, diagnostic aspects of the disease, various host defense pathways against strongyloidiasis, and available treatment options

    Media 2: Adaptive optics optical coherence tomography at 1 MHz

    Get PDF
    Originally published in Biomedical Optics Express on 01 December 2014 (boe-5-12-4186

    Is Sitting Always Inactive and Standing Always Active? A Simultaneous Free-Living activPal and ActiGraph Analysis.

    Get PDF
    Sedentary Behavior (SB), defined as sitting with minimal physical activity, is an emergent public health topic. However, the measurement of SB considers either posture (e.g., activPal) or physical activity (e.g., ActiGraph), and thus neglects either active sitting or inactive standing. The aim of this study was to determine the true amount of active sitting and inactive standing in daily life, and to analyze by how much these behaviors falsify the single sensors' sedentary estimates. Sedentary time of 100 office workers estimated with activPal and ActiGraph was therefore compared with Bland-Altman statistics to a combined sensor analysis, the posture and physical activity index (POPAI). POPAI classified each activPal sitting and standing event into inactive or active using the ActiGraph counts. Participants spent 45.0% [32.2%-59.1%] of the waking hours inactive sitting (equal to SB), 13.7% [7.8%-21.6%] active sitting, and 12.0% [5.7%-24.1%] inactive standing (mean [5th-95th percentile]). The activPal overestimated sedentary time by 30.3% [12.3%-48.4%] and the ActiGraph by 22.5% [3.2%-41.8%] (bias [95% limit-of-agreement]). The results showed that sitting is not always inactive, and standing is not always active. Caution should therefore be paid when interpreting the activPal (ignoring active sitting) and ActiGraph (ignoring inactive standing) measured time as SB.Fysisk aktivitet och hälsosamma hjärnfunktioner bland kontorsarbetare: Delprojekt 1, Tvärsnittsstudi

    How Accurate and Precise Can We Measure the Posture and the Energy Expenditure Component of Sedentary Behaviour with One Sensor?

    Get PDF
    Sedentary behaviour is an emergent public health topic, but there is still no method to simultaneously measure both components of sedentary behaviour-posture and energy expenditure-with one sensor. This study investigated the accuracy and precision of measuring sedentary time when combining the proprietary processing of a posture sensor (activPAL) with a new energy expenditure algorithm and the proprietary processing of a movement sensor (ActiGraph) with a published posture algorithm. One hundred office workers wore both sensors for an average of 7 days. The activPAL algorithm development used 38 and the subsequent independent method comparison 62 participants. The single sensor sedentary estimates were compared with Bland-Atman statistics to the Posture and Physical Activity Index, a combined measurement with both sensors. All single-sensor methods overestimated sedentary time. However, adding the algorithms reduced the overestimation from 129 to 21 (activPAL) and from 84 to 7 min a day (ActiGraph), with far narrower 95% limits of agreements. Thus, combining the proprietary data with the algorithms is an easy way to increase the accuracy and precision of the single sensor sedentary estimates and leads to sedentary estimates that are more precise at the individual level than those of the proprietary processing are at the group level
    corecore