2 research outputs found

    TalkingBoogie: Collaborative Mobile AAC System for Non-verbal Children with Developmental Disabilities and Their Caregivers

    Get PDF
    Augmentative and alternative communication (AAC) technologies are widely used to help non-verbal children enable communication. For AAC-aided communication to be successful, caregivers should support children with consistent intervention strategies in various settings. As such, caregivers need to continuously observe and discuss children's AAC usage to create a shared understanding of these strategies. However, caregivers often find it challenging to effectively collaborate with one another due to a lack of family involvement and the unstructured process of collaboration. To address these issues, we present TalkingBoogie, which consists of two mobile apps: TalkingBoogie-AAC for caregiver-child communication, and TalkingBoogie-coach supporting caregiver collaboration. Working together, these applications provide contextualized layouts for symbol arrangement, scaffold the process of sharing and discussing observations, and induce caregivers' balanced participation. A two-week deployment study with four groups (N=11) found that TalkingBoogie helped increase mutual understanding of strategies and encourage balanced participation between caregivers with reduced cognitive loads.SNU Undergraduate Research Program through the Faculty of Liberal Education, Seoul National University (2019-23) National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019S1A5A2A01045980

    Text entry tap accuracy and exploration of tilt controlled layered interaction on Smartwatches

    No full text
    Design of text entry on small screen devices, e.g. smartwatches, faces two related challenges: trading off a reasonably sized keyboard area against space to display the entered text and the concern over "fat fingers". This paper investigates tap accuracy and revisits layered interfaces to explore a novel layered text entry method. A two part user study identifies preferred typing and reading tilt angles and then investigates variants of a tilting layered keyboard against a standard layout. We show good typing speed (29 wpm) and very high accuracy on the standard layout – contradicting fears of fat-fingers limiting watch text-entry. User feedback is positive towards tilting interaction and we identify ~14° tilt as a comfortable typing angle. However, layering resulted in slightly slower and more erroneous entry. The paper contributes new data on tilt angles and key offsets for smartwatch text entry and supporting evidence for the suitability of QWERTY on smartwatches
    corecore