15 research outputs found

    Structure and Dynamics of Biological Systems: Integration of Neutron Scattering with Computer Simulation

    Full text link
    The combination of molecular dynamics simulation and neutron scattering techniques has emerged as a highly synergistic approach to elucidate the atomistic details of the structure, dynamics and functions of biological systems. Simulation models can be tested by calculating neutron scattering structure factors and comparing the results directly with experiments. If the scattering profiles agree the simulations can be used to provide a detailed decomposition and interpretation of the experiments, and if not, the models can be rationally adjusted. Comparison with neutron experiment can be made at the level of the scattering functions or, less directly, of structural and dynamical quantities derived from them. Here, we examine the combination of simulation and experiment in the interpretation of SANS and inelastic scattering experiments on the structure and dynamics of proteins and other biopolymers

    Activity and Dynamics of an Enzyme, Pig Liver Esterase, in Near-Anhydrous Conditions

    Get PDF
    Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solvation and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydrations of 3 (±2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast (≤nanosecond) global anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any of its more specific properties
    corecore