217 research outputs found

    Benign Hereditary Chorea: An Update

    Get PDF
    Benign hereditary chorea (BHC) is a childhood-onset, hyperkinetic movement disorder normally with little progression of motor symptoms into adult life. The disorder is caused by mutations to the NKX2.1 (TITF1) gene and also forms part of the “brain–lung–thyroid syndrome”, in which additional developmental abnormalities of lung and thyroid tissue are observed. In this review, we summarize the main clinical findings in “classical” BHC syndrome and discuss more recently reported atypical features, including non-choreiform movement phenotypes. We highlight additional non-motor characteristics such as cognitive impairment and psychiatric symptoms, while discussing the evidence for BHC as a developmental disorder involving impaired neural migration and other multisystem developmental abnormalities. Finally, we will discuss the efficacy of available therapies in both affected pediatric and adult cohorts. Delineation of the BHC disease spectrum will no doubt expand our understanding of this disorder, facilitating better targeting of genetic testing and establish a framework for future clinical trials

    Case report: First case report of an Emirati child with a novel gene variant causing aromatic L-amino acid decarboxylase deficiency

    Get PDF
    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, neurometabolic disorder resulting from biallelic mutations in the dopa decarboxylase (DDC) gene. This is the first reported case of AADC deficiency in the United Arab Emirates (UAE) and describes an Emirati male patient who presented in the first few months of life with a severe phenotype of global hypotonia, developmental delay and oculogyric crisis. Following whole exome sequencing, a novel homozygous mutation in the DDC gene (c.1144G>T, p.Val382Phe) was reported and the patient underwent further testing, after which a diagnosis of AADC deficiency was confirmed. This mutation has not been previously described, but the clinical phenotype and corresponding biochemical profile confirmed that it is a pathogenic variant. The patient is currently managed at a tertiary referral center in the UAE and is treated in accordance with published guidance on AADC deficiency, including the recommended medical therapy combined with multidisciplinary care from a team of specialists. Some symptomatic improvements have been reported but at 5 years of age the patient continues to exhibit profound developmental delay, oculogyric crisis and is prone to recurrent respiratory infections. In order to improve outcomes for patients with AADC deficiency in the Middle Eastern region, there is an urgent need to raise the index of clinical suspicion, particularly among primary care physicians, pediatricians, and pediatric neurologists, and to improve access to diagnostic testing. This is particularly relevant at the current time, given the ongoing development of potentially disease-modifying gene therapy for AADC deficiency

    Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies

    Get PDF
    Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models

    Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions

    Get PDF
    Human cortical development is an intricate process resulting in the generation of many interacting cell types and long-range connections to and from other brain regions. Human stem cell-derived cortical organoids are now becoming widely used to model human cortical development both in physiological and pathological conditions, as they offer the advantage of recapitulating human-specific aspects of corticogenesis that were previously inaccessible. Understanding the electrophysiological properties and functional maturation of neurons derived from human cortical organoids is key to ensure their physiological and pathological relevance. Here we review existing data on the electrophysiological properties of neurons in human cortical organoids, as well as recent advances in the complexity of cortical organoid modeling that have led to improvements in functional maturation at single neuron and neuronal network levels. Eventually, a more comprehensive and standardized electrophysiological characterization of these models will allow to better understand human neurophysiology, model diseases and test novel treatments

    Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies

    Get PDF
    Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models

    Dopamine Transporter Deficiency Syndrome (DTDS): Expanding the Clinical Phenotype and Precision Medicine Approaches

    Get PDF
    Infantile parkinsonism-dystonia due to dopamine transporter deficiency syndrome (DTDS) is an ultrarare childhood movement disorder caused by biallelic loss-of-function mutations in the SLC6A3 gene. Advances in genomic analysis have revealed an evolving spectrum of SLC6A3-related neurological and neuropsychiatric disorders. Since the initial clinical and genetic characterisation of DTDS in 2009, there have been thirty-one published cases with a variety of protein-truncating variants (nonsense variants, splice-site changes, and deletions) and missense changes. Amino acid substitutions result in mutant proteins with impaired dopamine transporter function due to reduced transporter activity, impaired dopamine binding, reduced cell-surface expression, and aberrant posttranslational protein modification with impaired glycosylation. In this review, we provide an overview of the expanding clinical phenotype of DTDS and the precision therapies in development, including pharmacochaperones and gene therapy

    Gene Therapy for Dopamine Dyshomeostasis: From Parkinson's to Primary Neurotransmitter Diseases

    Get PDF
    Neurological disorders encompass a broad range of neurodegenerative and neurodevelopmental diseases that are complex and almost universally without disease modifying treatments. There is, therefore, significant unmet clinical need to develop novel therapeutic strategies for these patients. Viral gene therapies are a promising approach, where gene delivery is achieved through viral vectors such as adeno-associated virus and lentivirus. The clinical efficacy of such gene therapies has already been observed in two neurological disorders of pediatric onset; for spinal muscular atrophy and aromatic L-amino acid decarboxylase (AADC) deficiency, gene therapy has significantly modified the natural history of disease in these life-limiting neurological disorders. Here, we review recent advances in gene therapy, focused on the targeted delivery of dopaminergic genes for Parkinson's disease and the primary neurotransmitter disorders, AADC deficiency and dopamine transporter deficiency syndrome (DTDS). Although recent European Medicines Agency and Medicines and Healthcare products Regulatory Agency approval of Upstaza (eladocagene exuparvovec) signifies an important landmark, numerous challenges remain. Future research will need to focus on defining the optimal therapeutic window for clinical intervention, better understanding of the duration of therapeutic efficacy, and improved brain targeting. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Gene therapy for neurotransmitter-related disorders

    Get PDF
    Inborn errors of neurotransmitter (NT) metabolism are a group of rare, heterogenous diseases with predominant neurological features, such as movement disorders, autonomic dysfunction, and developmental delay. Clinical overlap with other disorders has led to delayed diagnosis and treatment, and some conditions are refractory to oral pharmacotherapies. Gene therapies have been developed and translated to clinics for paediatric inborn errors of metabolism, with 38 interventional clinical trials ongoing to date. Furthermore, efforts in restoring dopamine synthesis and neurotransmission through viral gene therapy have been developed for Parkinson's disease. Along with the recent European Medicines Agency (EMA) and Medicines and Healthcare Products Regulatory Agency (MHRA) approval of an AAV2 gene supplementation therapy for AADC deficiency, promising efficacy and safety profiles can be achieved in this group of diseases. In this review, we present preclinical and clinical advances to address NT-related diseases, and summarise potential challenges that require careful considerations for NT gene therapy studies

    HOPS-associated neurological disorders (HOPSANDs): linking endolysosomal dysfunction to the pathogenesis of dystonia

    Get PDF
    The homotypic fusion and protein sorting (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the aetiopathogenesis of inherited dystonias (i.e. VPS16, VPS41, and VPS11). Functional and microstructural studies conducted on patient-derived fibroblasts carrying mutations of HOPS complex subunits displayed clear abnormalities of the lysosomal and autophagic compartments. We propose to name this group of diseases HOPS-associated neurological disorders (HOPSANDs), which are mainly characterized by dystonic presentations. The delineation of HOPSANDs further confirms the connection of lysosomal and autophagic dysfunction with the pathogenesis of dystonia, prompting researchers to find innovative therapies targeting this pathway
    • 

    corecore