203 research outputs found

    High energy flare physics group summary

    Get PDF
    The contributions of the High Energy Flare Physics Special Session in the American Astronomical Society Solar Physics Division Meeting are reviewed. Oral and poster papers were presented on observatories and instruments available for the upcoming solar maximum. Among these are the space-based Gamma Ray Observatory, the Solar Flare and Cosmic Burst Gamma Ray Experiment on the Ulysses spacecraft, the Soft X Ray Telescope on the spacecraft Solar-A, and the balloon-based Gamma Ray Imaging Device. Ground based observatories with new capabilities include the BIMA mm-wave interferometer (Univ. of California, Berkeley; Univ. of Illinois; Univ. of Maryland), Owens Valley Radio Observatory and the Very Large Array. The highlights of the various instrument performances are reported and potential data correlations and collaborations are suggested

    Restoring Parmenides' Poem: Essays toward a New Arrangement of the Fragments Based on a Reassessment of the Original Sources

    Get PDF
    The history of philosophy proper, claimed Hegel, began with the poem of the Presocratic Greek philosopher Parmenides. Today, that poem is extant only in fragmentary form, the various fragments surviving as quotations, translations, or paraphrases in the works of better-preserved authors of antiquity. These range from Plato, writing within a century after Parmenides' death, to the sixth-century C.E. commentator Simplicius of Cilicia, the latest figure known to have had access to the compete poem. Since the Renaissance, students of Parmenides have relied on collections of fragments compiled by classical scholars, and since the turn of the twentieth century, Hermann Diels' Die Fragmente der Vorsokratiker, through a number of editions, has remained the standard collection for Presocratic material generally and for the arrangement of Parmenides' fragments in particular. This dissertation is an extended critique of that arrangement. I argue that the reconstructions of Parmenides' poem in the last two centuries suffer from a number of mistakes. Those errors stem from a general failure to appreciate the peculiar literary character of his work as well as the mishandling, in particular instances, of the various sources that preserve what remains of his verse. By reconsidering a number of rarely questioned assumptions underlying the standard presentations and by revisiting the source material with greater care, a number of scholarly impasses that have beset the discussion of this difficult text are resolved, and the foundations for a more faithful and fuller reconstruction of Parmenides' work are established

    A Novel Approach to Extending Music Using Latent Diffusion

    Get PDF
    Using deep learning to synthetically generate music is a research domain that has gained more attention from the public in the past few years. A subproblem of music generation is music extension, or the task of taking existing music and extending it. This work proposes the Continuer Pipeline, a novel technique that uses deep learning to take music and extend it in 5 second increments. It does this by treating the musical generation process as an image generation problem; we utilize latent diffusion models (LDMs) to generate spectrograms, which are image representations of music. The Continuer Pipeline is able to receive a waveform as an input, and its output will be what the pipeline predicts the next five seconds might sound like. We trained the Continuer Pipeline using the expansive diffusion model functionality provided by the HuggingFace platform, and our dataset consisted of 256x256 spectrogram images representing 5-second snippets of various hip-hop songs from Spotify. The musical waveforms generated by the Continuer Pipeline are currently at a much lower quality compared to human-generated music, but we affirm that the Continuer Pipeline still has many uses in its current state, and we describe many avenues for future improvement to this technology

    Method for Automatic Level Matching in a Local Network, in Particular a Multicomputer Arrangement, Comprising a Bus System Having Lightwaves Guides, for the Purpose of Collision Recognition

    Get PDF
    A method is disclosed for automatic level matching in a local network, particularly for a multicomputer arrangement, comprising an optical bus system, for the purpose of collision recognition. Given a required level matching, the process is executed such that a fundamental phase is provided in which level matching devices respectively individually assigned to the computers are synchronized with one another. A first matching phase is provided in which all level matching devices simultaneously execute a process for setting a reference voltage to the lowest received level, whereby the sum of all attenuation components of the signal path at the receiving side of the appertaining computer is taken into consideration. A second matching phase is provided in which all level matching devices successively execute a process for setting the transmission level of their own transmitter such that the emitted light power at its own receiver leads to the receiving power registered as lowest, whereby the sum of all attenuation components of the signal path at the transmitting side of the appertaining computer is taken into consideration

    Report of the x ray and gamma ray sensors panel

    Get PDF
    Overall five major areas of technology are recommended for development in order to meet the science requirements of the Astrotech 21 mission set. These are: detectors for high resolution gamma ray spectroscopy, cryogenic detectors for improved x ray spectral and spatial resolution, advanced x ray charge coupled devices (CCDs) for higher energy resolution and larger format, extension to higher energies, liquid and solid position sensitive detectors for improving stopping power in the energy range 5 to 500 keV and 0.2 to 2 MeV. Development plans designed to achieve the desired capabilities on the time scales required by the technology freeze dates have been recommended in each of these areas

    Capabilities of GRO/OSSE for observing solar flares

    Get PDF
    The launch of the Gamma Ray Observatory (GRO) near solar maximum makes solar flare studies early in the mission particularly advantageous. The Oriented Scintillation Spectrometer Experiment (OSSE) on GRO, covering the energy range 0.05 to 150 MeV, has some significant advantages over the previous generation of satellite-borne gamma-ray detectors for solar observations. The OSSE detectors will have about 10 times the effective area of the Gamma-Ray Spectrometer (GRS) on Solar Maximum Mission (SMM) for both photons and high-energy neutrons. The OSSE also has the added capability of distinguishing between high-energy neutrons and photons directly. The OSSE spectral accumulation time (approx. 4s) is four times faster than that of the SMM/GRS; much better time resolution is available in selected energy ranges. These characteristics will allow the investigation of particle acceleration in flares based on the evolution of the continuum and nuclear line components of flare spectra, nuclear emission in small flares, the anisotropy of continuum emission in small flares, and the relative intensities of different nuclear lines. The OSSE observational program will be devoted primarily to non-solar sources. Therefore, solar observations require planning and special configurations. The instrumental and operational characteristics of OSSE are discussed in the context of undertaking solar observations. The opportunities for guest investigators to participate in solar flare studies with OSSE is also presented

    Precise Environmental Searches: Integrating Hierarchical Information Search with EnviroDaemon

    Get PDF
    Information retrieval has evolved from searches of references, to abstracts, to documents. Search on the Web involves search engines that promise to parse full-text and other files: audio, video, and multimedia. With the indexable Web at 320 million pages and growing, difficulties with locating relevant information have become apparent. The most prevalent means for information retrieval relies on syntax-based methods: keywords or strings of characters are presented to a search engine, and it returns all the matches in the available documents. This method is satisfactory and easy to implement, but it has some inherent limitations that make it unsuitable for many tasks. Instead of looking for syntactical patterns, the user often is interested in keyword meaning or the location of a particular word in a title or header. This paper describes some precise search approaches in the environmental domain that locate information according to syntactic criteria, augmented by the utilization of information in a certain context. The main emphasis of this paper lies in the treatment of structured knowledge, where essential aspects about the topic of interest are encoded not only by the individual items, but also by their relationships among each other. Examples for such structured knowledge are hypertext documents, diagrams, logical and chemical formulae. Benefits of this approach are enhanced precision and approximate search in an already focused, context-specific search engine for the environment: EnviroDaemon

    Comparative Studies of Line and Contiuum Positron Annihilation Radiation

    Get PDF
    Positron annihilation radiation from the Galaxy has been observed by the OSSE, SMM and TGRS instruments. Improved spectral modeling of OSSE observa-tions has allowed studies of the distribution of both positron annihilation radiation components, the narrow line emission at 511 keV and the positronium continuum emission. The results derived for each individual annihilation component are then compared with each other. These comparisons reveal approximate agreement between the distribution of these two emissions. In certain regions of the sky (notably in the vicinity of the previously reported positive latitude enhancement), the distribution of the emissions differ. We discuss these differences and the methods currently being employed to understand whether the differences are physical or a systematic error in the present analysis

    Supernovae and Positron Annihilation Radiation

    Get PDF
    Radioactive nuclei, especially those created in SN explosion, have long been sug-gested to be important contributors of galactic positrons. In this paper we describe the findings of three independent OSSE/SMM/TGRS studies of positron annihi-lation radiation, demonstrating that the three studies are largely in agreement as to the distribution of galactic annihilation radiation. We then assess the predicted yields and distributions of SN-synthesized radionuclei, determining that they are marginally compatible with the findings of the annihilation radiation studies
    corecore