13 research outputs found

    Delirium in fast-track colonic surgery

    No full text

    Urokinase Plasminogen Activator Receptor (uPAR) PET/MRI of Prostate Cancer for Non-invasive Evaluation of Aggressiveness:a Prospective Phase II Clinical Trial Comparing with Gleason Score

    No full text
    The aim of this study was to evaluate the correlation between uptake of the PET ligand (68)Ga-NOTA-AE105, targeting the urokinase-type plasminogen activator receptor (uPAR), and Gleason score in patients undergoing prostate biopsy. Methods: Patients with clinical suspicion of prostate cancer (PCa) or previously diagnosed with PCa were prospectively enrolled in this phase 2 trial. A combination of uPAR PET and multiparametric MRI (mpMRI) was performed, and the SUV in the primary tumor, as delineated by mpMRI, was measured by 2 independent readers. The correlation between the SUV and the Gleason score obtained by biopsy was assessed. Results: A total of 27 patients had histologically verified PCa visible on mpMRI and constituted the study population. There was a positive correlation between the SUV(max) and the Gleason score (Spearman ρ = 0.55; P = 0.003). Receiver operating characteristic analysis showed an area under the curve of 0.88 (95% CI, 0.67–1.00) for discriminating a Gleason score of greater than or equal to 3 + 4 from a Gleason score of less than or equal to 3 + 3. A cutoff for the tumor SUV(max) could be established with a sensitivity of 96% (79%–99%) and a specificity of 75% (30%–95%) for detecting a Gleason score of greater than or equal to 3 + 4. For discriminating a Gleason score of greater than or equal to 4 + 3 from a Gleason score of less than or equal to 3 + 4, a cutoff could be established for detecting a Gleason score of greater than or equal to 4 + 3 with a sensitivity of 93% (69%–99%) and a specificity of 62% (36%–82%). Conclusion: SUV measurements from uPAR PET in primary tumors, as delineated by mpMRI, showed a significant correlation with the Gleason score, and the tumor SUV(max) was able to discriminate between low-risk Gleason score profiles and intermediate risk Gleason score profiles with a high diagnostic accuracy. Consequently, uPAR PET/MRI could be a promising method for the noninvasive evaluation of PCa and might reduce the need for repeated biopsies (e.g., in active surveillance)

    Improved Positron Emission Tomography Quantification: Evaluation of a Maximum-Likelihood Scatter Scaling Algorithm

    No full text
    Incorrect scatter scaling of positron emission tomography (PET) images can lead to halo artifacts, quantitative bias, or reconstruction failure. Tail-fitted scatter scaling (TFSS) possesses performance limitations in multiple cases. This study aims to investigate a novel method for scatter scaling: maximum-likelihood scatter scaling (MLSS) in scenarios where TFSS tends to induce artifacts or are observed to cause reconstruction abortion. [68Ga]Ga-RGD PET scans of nine patients were included in cohort 1 in the scope of investigating the reduction of halo artifacts relative to the scatter estimation method. PET scans of 30 patients administrated with [68Ga]Ga-uPAR were included in cohort 2, used for an evaluation of the robustness of MLSS in cases where TFSS-integrated reconstructions are observed to fail. A visual inspection of MLSS-corrected images scored higher than TFSS-corrected reconstructions of cohort 1. The quantitative investigation near the bladder showed a relative difference in tracer uptake of up to 94.7%. A reconstruction of scans included in cohort 2 resulted in failure in 23 cases when TFSS was used. The lesion uptake values of cohort 2 showed no significant difference. MLSS is suggested as an alternative scatter-scaling method relative to TFSS with the aim of reducing halo artifacts and a robust reconstruction process

    IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery:Preclinical studies in orthotopic xenografts

    No full text
    Glioblastoma (GBM) is a devastating cancer with basically no curative treatment. Even with aggressive treatment, the median survival is disappointing 14 months. Surgery remains the key treatment and the postoperative survival is determined by the extent of resection. Unfortunately, the invasive growth with irregular infiltrating margins complicates an optimal surgical resection. Precise intraoperative tumor visualization is therefore highly needed and molecular targeted near-infrared (NIR) fluorescence imaging potentially constitutes such a tool. The urokinase-type Plasminogen Activator Receptor (uPAR) is expressed in most solid cancers primarily at the invading front and the adjacent activated peritumoral stroma making it an attractive target for targeted fluorescence imaging. The purpose of this study was to develop and evaluate a new uPAR-targeted optical probe, IRDye800CW-AE344, for fluorescence guided surgery (FGS). Methods: In the present study we characterized the fluorescent probe with regard to binding affinity, optical properties, and plasma stability. Further, in vivo imaging characterization was performed in nude mice with orthotopic human patient derived glioblastoma xenografts, and we performed head-to-head comparison within FGS between our probe and the traditional procedure using 5-ALA. Finally, the blood-brain barrier (BBB) penetration was characterized in a 3D BBB spheroid model. Results: The probe effectively visualized GBM in vivo with a tumor-to-background ratio (TBR) above 4.5 between 1 to 12 h post injection and could be used for FGS of orthotopic human glioblastoma xenografts in mice where it was superior to 5-ALA. The probe showed a favorable safety profile with no evidence of any acute toxicity. Finally, the 3D BBB model showed uptake of the probe into the spheroids indicating that the probe crosses the BBB. Conclusion: IRDye800CW-AE344 is a promising uPAR-targeted optical probe for FGS and a candidate for translation into human use
    corecore