224 research outputs found

    Sum Rules of the Multiple Giant Dipole States

    Full text link
    Various sum rules for multiple giant dipole resonance states are derived. For the triple giant dipole resonance states, the energy-weighted sum of the transition strengths requires a model to be related to those of the single and double giant dipole resonance states. It is also shown that the non-diagonal matrix elements of the double commutator between the dipole operator and the nuclear Hamiltonian give useful identities for the excitation energy and transition strength of each excited state. Using those identities, the relationship between width of the single dipole state and those of the multiple ones is qualitatively discussed.Comment: 8 pages, 1 figure, using PTPTeX styl

    The mean energy, strength and width of triple giant dipole resonances

    Get PDF
    We investigate the mean energy, strength and width of the triple giant dipole resonance using sum rules.Comment: 12 page

    Leaps and lulls in the developmental transcriptome of Dictyostelium discoideum

    Get PDF
    Development of the soil amoeba Dictyostelium discoideum is triggered by starvation. When placed on a solid substrate, the starving solitary amoebae cease growth, communicate via extracellular cAMP, aggregate by tens of thousands and develop into multicellular organisms. Early phases of the developmental program are often studied in cells starved in suspension while cAMP is provided exogenously. Previous studies revealed massive shifts in the transcriptome under both developmental conditions and a close relationship between gene expression and morphogenesis, but were limited by the sampling frequency and the resolution of the methods. Here, we combine the superior depth and specificity of RNA-seq-based analysis of mRNA abundance with high frequency sampling during filter development and cAMP pulsing in suspension. We found that the developmental transcriptome exhibits mostly gradual changes interspersed by a few instances of large shifts. For each time point we treated the entire transcriptome as single phenotype, and were able to characterize development as groups of similar time points separated by gaps. The grouped time points represented gradual changes in mRNA abundance, or molecular phenotype, and the gaps represented times during which many genes are differentially expressed rapidly, and thus the phenotype changes dramatically. Comparing developmental experiments revealed that gene expression in filter developed cells lagged behind those treated with exogenous cAMP in suspension. The high sampling frequency revealed many genes whose regulation is reproducibly more complex than indicated by previous studies. Gene Ontology enrichment analysis suggested that the transition to multicellularity coincided with rapid accumulation of transcripts associated with DNA processes and mitosis. Later development included the up-regulation of organic signaling molecules and co-factor biosynthesis. Our analysis also demonstrated a high level of synchrony among the developing structures throughout development. Our data describe D. discoideum development as a series of coordinated cellular and multicellular activities. Coordination occurred within fields of aggregating cells and among multicellular bodies, such as mounds or migratory slugs that experience both cell-cell contact and various soluble signaling regimes. These time courses, sampled at the highest temporal resolution to date in this system, provide a comprehensive resource for studies of developmental gene expression

    Effects of the Neutron Spin-Orbit Density on Nuclear Charge Density in Relativistic Models

    Full text link
    The neutron spin-orbit density contributes to the nuclear charge density as a relativistic effect. The contribution is enhanced by the effective mass stemming from the Lorentz-scalar potential in relativistic models. This enhancement explains well the difference between the cross sections of elastic electron scattering off 40^{40}Ca and 48^{48}Ca which was not reproduced in non-relativistic models. The spin-orbit density will be examined in more detail in electron scattering off unstable nuclei which would be available in the future.Comment: 4 pages with 3 eps figures, revte

    Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)

    Full text link
    Fully microscopic RPA/LDA calculations of the dipole plasmon for very large neutral and charged sodium clusters, Na_N^Z+, in the size range 950 < N < 12050 are presented for the first time. 60 different sizes are considered altogether, which allows for an in-depth investigation of the asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for publication in Physical Review

    Anharmonic properties of double giant dipole resonance

    Get PDF
    A systematic microscopic study of the anharmonic properties of the double giant dipole resonance (DGDR) has been carried out, for the first time, for nuclei with mass number AA spanning the whole mass table. It is concluded that the corrections of the energy centroid of the Jπ=0+J^{\pi} = 0^+ and 2+2^+ components of the DGDR from its harmonic limit are negative, have a value of the order of few hundred keV and follow an A1A^{-1} dependence.Comment: 4 pages, 2 figure

    Conserved developmental transcriptomes in evolutionarily divergent species

    Get PDF
    Transcriptional profiling of Dictyostelium development reveals significant conservation of transcriptional profiles between evolutionarily divergent species

    Electromagnetic form factors of the bound nucleon

    Get PDF
    We calculate electromagnetic form factors of the proton bound in specified orbits for several closed shell nuclei. The quark structure of the nucleon and the shell structure of the finite nuclei are given by the QMC model. We find that orbital electromagnetic form factors of the bound nucleon deviate significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure

    Analysis of exchange terms in a projected ERPA Theory applied to the quasi-elastic (e,e') reaction

    Get PDF
    A systematic study of the influence of exchange terms in the longitudinal and transverse nuclear response to quasi-elastic (e,e') reactions is presented. The study is performed within the framework of the extended random phase approximation (ERPA), which in conjuction with a projection method permits a separation of various contributions tied to different physical processes. The calculations are performed in nuclear matter up to second order in the residual interaction for which we take a (pi+rho)-model with the addition of the Landau-Migdal g'-parameter. Exchange terms are found to be important only for the RPA-type contributions around the quasielastic peak.Comment: 29 pages, 6 figs (3 in postscript, 3 faxed on request), epsf.st

    Modified Quark-Meson Coupling Model for Nuclear Matter

    Get PDF
    The quark-meson coupling model for nuclear matter, which describes nuclear matter as non-overlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: one invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics.Comment: Part of the text is reordered, revised version to appear in Phys. Rev. C. 19 pages, ReVTeX, 4 figures embedde
    corecore