224 research outputs found
Sum Rules of the Multiple Giant Dipole States
Various sum rules for multiple giant dipole resonance states are derived. For
the triple giant dipole resonance states, the energy-weighted sum of the
transition strengths requires a model to be related to those of the single and
double giant dipole resonance states. It is also shown that the non-diagonal
matrix elements of the double commutator between the dipole operator and the
nuclear Hamiltonian give useful identities for the excitation energy and
transition strength of each excited state. Using those identities, the
relationship between width of the single dipole state and those of the multiple
ones is qualitatively discussed.Comment: 8 pages, 1 figure, using PTPTeX styl
The mean energy, strength and width of triple giant dipole resonances
We investigate the mean energy, strength and width of the triple giant dipole
resonance using sum rules.Comment: 12 page
Leaps and lulls in the developmental transcriptome of Dictyostelium discoideum
Development of the soil amoeba Dictyostelium discoideum is triggered by starvation. When placed on a solid substrate, the starving solitary amoebae cease growth, communicate via extracellular cAMP, aggregate by tens of thousands and develop into multicellular organisms. Early phases of the developmental program are often studied in cells starved in suspension while cAMP is provided exogenously. Previous studies revealed massive shifts in the transcriptome under both developmental conditions and a close relationship between gene expression and morphogenesis, but were limited by the sampling frequency and the resolution of the methods. Here, we combine the superior depth and specificity of RNA-seq-based analysis of mRNA abundance with high frequency sampling during filter development and cAMP pulsing in suspension. We found that the developmental transcriptome exhibits mostly gradual changes interspersed by a few instances of large shifts. For each time point we treated the entire transcriptome as single phenotype, and were able to characterize development as groups of similar time points separated by gaps. The grouped time points represented gradual changes in mRNA abundance, or molecular phenotype, and the gaps represented times during which many genes are differentially expressed rapidly, and thus the phenotype changes dramatically. Comparing developmental experiments revealed that gene expression in filter developed cells lagged behind those treated with exogenous cAMP in suspension. The high sampling frequency revealed many genes whose regulation is reproducibly more complex than indicated by previous studies. Gene Ontology enrichment analysis suggested that the transition to multicellularity coincided with rapid accumulation of transcripts associated with DNA processes and mitosis. Later development included the up-regulation of organic signaling molecules and co-factor biosynthesis. Our analysis also demonstrated a high level of synchrony among the developing structures throughout development. Our data describe D. discoideum development as a series of coordinated cellular and multicellular activities. Coordination occurred within fields of aggregating cells and among multicellular bodies, such as mounds or migratory slugs that experience both cell-cell contact and various soluble signaling regimes. These time courses, sampled at the highest temporal resolution to date in this system, provide a comprehensive resource for studies of developmental gene expression
Effects of the Neutron Spin-Orbit Density on Nuclear Charge Density in Relativistic Models
The neutron spin-orbit density contributes to the nuclear charge density as a
relativistic effect. The contribution is enhanced by the effective mass
stemming from the Lorentz-scalar potential in relativistic models. This
enhancement explains well the difference between the cross sections of elastic
electron scattering off Ca and Ca which was not reproduced in
non-relativistic models. The spin-orbit density will be examined in more detail
in electron scattering off unstable nuclei which would be available in the
future.Comment: 4 pages with 3 eps figures, revte
Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)
Fully microscopic RPA/LDA calculations of the dipole plasmon for very large
neutral and charged sodium clusters, Na_N^Z+, in the size range 950
< N < 12050 are presented for the first time. 60 different sizes are
considered altogether, which allows for an in-depth investigation of the
asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for
publication in Physical Review
Anharmonic properties of double giant dipole resonance
A systematic microscopic study of the anharmonic properties of the double
giant dipole resonance (DGDR) has been carried out, for the first time, for
nuclei with mass number spanning the whole mass table. It is concluded that
the corrections of the energy centroid of the and
components of the DGDR from its harmonic limit are negative, have a value of
the order of few hundred keV and follow an dependence.Comment: 4 pages, 2 figure
Conserved developmental transcriptomes in evolutionarily divergent species
Transcriptional profiling of Dictyostelium development reveals significant conservation of transcriptional profiles between evolutionarily divergent species
Electromagnetic form factors of the bound nucleon
We calculate electromagnetic form factors of the proton bound in specified
orbits for several closed shell nuclei. The quark structure of the nucleon and
the shell structure of the finite nuclei are given by the QMC model. We find
that orbital electromagnetic form factors of the bound nucleon deviate
significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure
Analysis of exchange terms in a projected ERPA Theory applied to the quasi-elastic (e,e') reaction
A systematic study of the influence of exchange terms in the longitudinal and
transverse nuclear response to quasi-elastic (e,e') reactions is presented. The
study is performed within the framework of the extended random phase
approximation (ERPA), which in conjuction with a projection method permits a
separation of various contributions tied to different physical processes. The
calculations are performed in nuclear matter up to second order in the residual
interaction for which we take a (pi+rho)-model with the addition of the
Landau-Migdal g'-parameter. Exchange terms are found to be important only for
the RPA-type contributions around the quasielastic peak.Comment: 29 pages, 6 figs (3 in postscript, 3 faxed on request), epsf.st
Modified Quark-Meson Coupling Model for Nuclear Matter
The quark-meson coupling model for nuclear matter, which describes nuclear
matter as non-overlapping MIT bags bound by the self-consistent exchange of
scalar and vector mesons, is modified by introducing medium modification of the
bag constant. We model the density dependence of the bag constant in two
different ways: one invokes a direct coupling of the bag constant to the scalar
meson field, and the other relates the bag constant to the in-medium nucleon
mass. Both models feature a decreasing bag constant with increasing density. We
find that when the bag constant is significantly reduced in nuclear medium with
respect to its free-space value, large canceling isoscalar Lorentz scalar and
vector potentials for the nucleon in nuclear matter emerge naturally. Such
potentials are comparable to those suggested by relativistic nuclear
phenomenology and finite-density QCD sum rules. This suggests that the
reduction of bag constant in nuclear medium may play an important role in low-
and medium-energy nuclear physics.Comment: Part of the text is reordered, revised version to appear in Phys.
Rev. C. 19 pages, ReVTeX, 4 figures embedde
- …