3,512 research outputs found

    Synthetic rabbit-human antibody conjugate as a control in immunoassays for immunoglobulin M specific to hepatitis E virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In assays for anti-hepatitis E virus (HEV) immunoglobulin M (IgM), large volumes of the patient's sera cannot be easily obtained for use as a positive control. In this study, we investigated an alternative chemical method in which rabbit anti-HEV IgG was conjugated with human IgM and was used as a positive control in the anti-HEV IgM assay. Rabbit anti-HEV IgG was isolated from immune sera by chromatography on protein A-Sepharose and was conjugated with human IgM by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinker.</p> <p>Results</p> <p>The specific anti-HEV IgG antibody titer was 100,000 times that of the negative control, i.e., prebleed rabbit serum. The results of anti-HEV IgM enzyme-linked immunosobent assay showed that the antibody conjugate was similar to anti-HEV IgM antibodies produced in humans. The results of a stability experiment showed that the antibody conjugate was stable for use in external quality assessment or internal quality control trials.</p> <p>Conclusions</p> <p>We concluded that the chemically conjugated rabbit-human antibody could be used instead of the traditional serum control as a positive control in the anti-HEV IgM assay.</p

    Clinical applicability of quantitative nailfold capillaroscopy in differential diagnosis of connective tissue diseases with Raynaud's phenomenon

    Get PDF
    Background/PurposeNailfold capillaroscopy is a useful tool to distinguish primary from secondary Raynaud's phenomenon (RP) by examining the morphology of nailfold capillaries but its role in disease diagnosis is not clearly established. The purpose of this study was to evaluate the roles of quantitative nailfold capillaroscopy in differential diagnosis of connective tissue diseases (CTDs) with RP.MethodsThe data between the year 2005 and 2009 were retrieved from the nailfold capillaroscopic database of National Taiwan University Hospital (NTUH). Only the data from the patients with RP were analyzed. The criteria for interpretation of capillaroscopic findings were predefined. The final diagnoses of the patients were based on the American College of Rheumatology classification criteria for individual diseases, independent of nailfold capillaroscopic findings. The sensitivity and the specificity of each capillaroscopic pattern to the diseases were determined.ResultsThe data from a total of 67 patients were qualified for the current study. We found the sensitivity and specificity of scleroderma pattern for systemic sclerosis (SSc) were 89.47% and 80%, and the specificity of the early, active, and late scleroderma patterns for SSc reached 87.5%, 97.5%, and 95%, respectively. The sensitivity/specificity of systemic lupus erythematosus (SLE) pattern for SLE and polymyositis/dermatomyositis (PM/DM) pattern for PM/DM were 33.33%/95.45% and 60%/96.3%, respectively. The sensitivity/specificity of mixed connective tissue disease (MCTD) pattern for MCTD were 20%/100%.ConclusionThe nailfold capillaroscopic (NC) patterns may be useful in the differential diagnosis of CTDs with RP. The NC patterns for SSc and PM/DM are both sensitive and specific to the diseases, while the SLE and MCTD patterns exhibit high specificity but relatively low sensitivity

    Pretreatment of Color Filter Wastewater towards Biodegradable by Fresnel-Lens-Assisted Solar TiO 2

    Get PDF
    The pretreatment of color filter wastewater towards biodegradable by Fresnel-lens-enhanced solar TiO2 photocatalytic process was investigated. The experimental design of response surface methodology (RSM) was employed to assess the effect of critical process parameters (including initial pH, TiO2 dosage, and reaction time) on pretreatment performance in terms of BOD5/COD, COD and TOC removal efficiency. Appropriate reaction conditions were established as an initial pH of 7.5, a TiO2 dosage of 1.5 g/L with a reaction time of 3 h for increasing the BOD5/COD ratio to 0.15, which implied that the treated wastewater would be possibly biodegradable. Meanwhile, the efficiency of COD and TOC removals reached 32.9% and 24.4%, respectively. With the enhancement of Fresnel lens, the required reaction time for improving the biodegradability of wastewater to 0.15 was 1 h only. Moreover, the efficiency of COD and TOC removals was promoted to 37.4% and 25.8%, respectively. This could be mainly due to the concentrated effect of Fresnel lens for solar energy, including an increase of 2 times of solar irradiation and a raising of 15–20°C of wastewater temperature. Consequently, solar TiO2 photocatalytic process with the use of a PMMA Fresnel lens could offer an economical and practical alternative for the pretreatment of industry wastewater containing diversified biorefractory pollutants with a high concentration of COD such as color filter wastewater

    Estimating systemic fibrosis by combining galectin-3 and ST2 provides powerful risk stratification value for patients after acute decompensated heart failure

    Get PDF
    Background: Two fibrosis biomarkers, galectin-3 (Gal-3) and suppression of tumorigenicity 2 (ST2), provide prognostic value additive to natriuretic peptides and traditional risk factors in patients with heart failure (HF). However, it is to be investigated whether their combined measurement before discharge provides incremental risk stratification for patients after acute HF. Methods: A total of 344 patients with acute HF were analyzed with Gal-3, and ST2 measured. Patients were prospectively followed for 3.7 ± 1.3 years for deaths, and composite events (death/HF-related re-hospitalizations). Results: The levels of Gal-3 and ST2 were only slightly related (r = 0.20, p &lt; 0.001). The medians of Gal-3 and ST2 were 18 ng/mL and 32.4 ng/mL, respectively. These biomarkers compensated each other and characterized patients with different risk factors. According to the cutoff at median values, patients were separated into four subgroups based on high and low Gal-3 (HG and LG, respectively) and ST2 levels (HS and LS, respectively). Kaplan-Meier survival curves showed that HGHS powerfully identified patients at risk of mortality (Log rank = 21.27, p &lt; 0.001). In multivariable analysis, combined log(Gal-3) and log(ST2) was an in­dependent predictor. For composite events, Kaplan-Meier survival curves showed a lower event- -free survival rate in the HGHS subgroup compared to others (Log rank = 34.62, p &lt; 0.001; HGHS vs. HGLS, Log rank = 4.00, p = 0.045). In multivariable analysis, combined log(Gal-3) and log(ST2) was also an independent predictor. Conclusions: Combination of biomarkers involving heterogeneous fibrosis pathways may identify patients with high systemic fibrosis, providing powerful risk stratification value

    Self-supervised learning-based general laboratory progress pretrained model for cardiovascular event detection

    Full text link
    The inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for TVR detection. The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority (p < 0.01) compared to prior GLP processing. Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise.Comment: published in IEEE Journal of Translational Engineering in Health & Medicin
    corecore