4 research outputs found

    SnoN expression is reduced in pancreatic adenocarcinoma samples.

    No full text
    <p><b>A,</b> Representative SnoN expression in the normal pancreas and in pancreatic adenocarcinoma of varying grades at 20X (top) or 40X (bottom) magnifications. E: epithelium; S: stroma. Green: SnoN; blue, DAPI. <b>B,</b> SnoN staining in normal and pancreatic tumor epithelial cells was quantified using Image J, and the numbers were plotted in the box plot, which includes normal samples (n = 5, mean = 3.08) and pancreatic tumor samples of grade I (n = 21, mean = 1.89), grade II (n = 59, mean = 1.59), and grade III (n = 8, mean = 2.09). SnoN expression in tumor samples was weaker than that in normal pancreatic samples (p = 0.0855 for grade I, p = 0.0125 for II, and p = 0.0518 for III). No significant difference was observed in SnoN epithelial staining between the pancreatic tumor samples. <b>C,</b> SnoN staining in normal (n = 2, mean = 1.87) and tumor stromal samples of grade I (n = 20, mean = 2.10), II (n = 55, mean = 1.70), and III (n = 8, mean = 1.57). There is no statistically significant difference between tumor and normal stroma samples.</p

    SnoN expression in esophageal adenocarcinoma.

    No full text
    <p><b>A,</b> Representative SnoN staining of esophageal cancer of various grades at 20X (top) or 40X (bottom) magnifications. Two grade III samples representing different levels of SnoN expression were shown. E: epithelium; S: stroma. Green: SnoN; blue, DAPI. <b>B,</b> SnoN staining in normal and tumor epithelial cells was quantified using the Image J software and the numbers were plotted in the box plot, which includes normal samples (n = 36, mean intensity = 1.13) and esophageal tumor samples of grade I (n = 8, mean = 0.07), II (n = 19, mean = 0.71), and III (n = 11, mean = 1.26). Statistical analysis comparing the normal controls to each tumor grade showed that the epithelial SnoN levels in esophageal adenocarcinoma are significantly weaker (grade I: p = 0.0002) or similar (grade II: p = 0.1425 and grade III: p = 0.3349) to that in the control normal samples. The increase in epithelial SnoN expression in grade III compared to grade I was statistically significant (p = 0.0013)<b>. </b><b>C,</b> Quantification of SnoN stromal staining in normal samples (n = 27, mean = 1.69) and esophageal tumor samples of grade I (n = 5, mean = 0.23), II (n = 19, mean = 1.09), and III (n = 11, mean = 1.78). The statistical analysis comparing the normal controls to each esophageal tumor grade is as follow: p = 0.0023 for grade I, p = 0.8565 for II, and p = 0.1132 for grade III. The increase in stromal SnoN expression in grade II (p = 0.0287) and grade III (p = 0.0068) tumors compared to grade I tumor stroma was statistically significant.</p

    SnoN is expressed in normal mammalian tissues. A,

    No full text
    <p>SnoN expression in the normal esophagus, including the suprabasal differentiated squamous epithelial cells, the lamina propria (stroma and connective tissue), and muscularis mucosa (smooth muscle). E: epithelial cells; F: fibroblasts; B.V; blood vessel. Negative control: tissue stained with conjugated secondary antibody alone and without primary antibody. Peptide control: tissue stained with the SnoN peptide competition control. Green: SnoN; blue, DAPI. <b>B,</b> Representative SnoN expression in the normal ovarian tissue. E: follicle epithelial cells; S: stroma. The left panel is DAPI stain alone (blue), the middle panel is SnoN stain alone (green), and the right panel is SnoN (green) plus DAPI (blue) stains. Same is true for figure panels in C-D. <b>C,</b> Representative SnoN expression in the normal pancreas. E: acinar epithelial cells; S:stromal cells of the lobular connective tissue septa. <b>D,</b> Representative SnoN expression in the normal breast. E: epithelial cells of ducts and lobuli; S: stroma.</p

    Elevated SnoN expression correlates with inactivation of p53 in human cancer cell lines but not in primary tumor tissues.

    No full text
    <p><b>A,</b> 914 cancer cell lines from the Novartis CLE were classified based on their p53 gene status (lost or wild-type) as shown in the X-axis and their correlation with the copy numbers of SnoN as indicated in the Y-axis. A significant enrichment of SnoN amplification events in p53 mutant or deleted cell lines was identified (p = 7.25E-009). <b>B,</b> Cell lines from the CLE were divided into 18 different tissue lineages as depicted by various colors, and the correlation between the frequency of TP53 mutation (X-axis) and frequency of SnoN amplification (Y-axis) was determined to be highly significant with a Pearson’s correlation coefficient of 0.7. <b>C,</b> Representative p53 immunohistochemical stain in normal ovarian tissue and ovarian adenocarcinoma of grade I, grade II, and grade III (Original magnification ×20). <b>D,</b> Box plot depicting the intensity of epithelial SnoN expression (Y-axis) and p53 protein levels (as marked from 0 to 5, 0 being the lowest level in normal tissues and 5 being the highest). No significant correlation between the status of SnoN protein level and p53 inactivation was noted as measured by the Kruskal-Wallis test (p = 0.817).</p
    corecore