1,231 research outputs found

    Water Quality at the Inlet to the St. Lawrence River, 1977 to 1983

    Get PDF
    Daily nutrients analyses and weekly major ions and trace metals analyses have been performed since 1977 on water samples collected in the south channel of the St. Lawrence River at Wolfe Island. This report presents the results of the first seven years of this program. Data analyses showed that pH and total phosphorus were underestimated. Calcium carbonate precipitation is suspected to occur almost every year in August or September. Most of the major ions have decreased, especially chloride and sodium. All trace metal data were below the objectives of the International Joint Commission in 90% of the cases or more. The Wolfe Island station was found to be a good tool for following the general trend of the main water quality parameters. More attention, however, should be focused on the problems of shipping delays and containers

    The treatment of zero eigenvalues of the matrix governing the equations of motion in many-body Green's function theory

    Full text link
    The spectral theorem of many-body Green's function theory relates thermodynamic correlations to Green's functions. More often than not, the matrix governing the equations of motion has zero eigenvalues. In this case, the standard text-book approach requires both commutator and anti-commutator Green's functions to obtain equations for that part of the correlation which does not lie in the null space of the matrix. In this paper, we show that this procedure fails if the projector onto the null space is dependent on the momentum vector. We propose an alternative formulation of the theory in terms of the non-null space alone and we show that a solution is possible if one can find a momentum-independent projector onto some subspace of the non-null space. To do this, we enlist the aid of the singular value decomposition (SVD) of the equation of motion matrix in order to project out the null space, thus reducing the size of the matrix and eliminating the need for the anti-commutator Green's function. We extend our previous work, dealing with a ferromagnetic Heisenberg monolayer and a momentum-independent projector onto the null space, where both multilayer films and a momentum-dependent projector are considered. We develop the numerical methods capable of handling these cases and offer a computational algorithmus that should be applicable to any similar problem arising in Green's function theory.Comment: 16 pages, 7 figure

    Spatial and temporal characterization of a Bessel beam produced using a conical mirror

    Full text link
    We experimentally analyze a Bessel beam produced with a conical mirror, paying particular attention to its superluminal and diffraction-free properties. We spatially characterized the beam in the radial and on-axis dimensions, and verified that the central peak does not spread over a propagation distance of 73 cm. In addition, we measured the superluminal phase and group velocities of the beam in free space. Both spatial and temporal measurements show good agreement with the theoretical predictions.Comment: 5 pages, 6 figure

    A deep Chandra ACIS survey of M83

    Get PDF
    We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of whichare SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 × 1035 erg s-1. Despite M83’s relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs

    A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    Get PDF
    We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of <_{\sim}^<1038^{38} erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038^{38} erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary.Comment: Accepted for publication in ApJ (25 pages, 17 figures

    Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101

    Full text link
    X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six luminous sources in the nearby spiral galaxy, M101, obtained with the Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.Comment: Accepted for publication in Astrophysical Journal (16 pages including 4 figures

    X-Ray Constraints on the Warm_hot Intergalactic Medium

    Full text link
    Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using \rosat PSPC pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV s^-1 cm^-2 sr^-1 keV^-1 in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral shape of the WHIM emission can be described as thermal emission with log T=6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV < E < 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is less than about 0.002 for 10 arcminutes < theta < 20 arcminutes in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of about 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV s^-1 cm^-2 sr^-1 keV^-1 to be consistent with the ROSAT All-Sky Survey.Comment: 5 pages, 2 figures, submitted to Astrophysical Journal Letter

    An XMM-Newton Observation of the Local Bubble Using a Shadowing Filament in the Southern Galactic Hemisphere

    Get PDF
    We present an analysis of the X-ray spectrum of the Local Bubble, obtained by simultaneously analyzing spectra from two XMM-Newton pointings on and off an absorbing filament in the Southern galactic hemisphere (b ~ -45 deg). We use the difference in the Galactic column density in these two directions to deduce the contributions of the unabsorbed foreground emission due to the Local Bubble, and the absorbed emission from the Galactic halo and the extragalactic background. We find the Local Bubble emission is consistent with emission from a plasma in collisional ionization equilibrium with a temperature logTLB=6.060.04+0.02\log T_{LB} = 6.06^{+0.02}_{-0.04} and an emission measure of 0.018 cm^{-6} pc. Our measured temperature is in good agreement with values obtained from ROSAT All-Sky Survey data, but is lower than that measured by other recent XMM-Newton observations of the Local Bubble, which find logTLB6.2\log T_{LB} \approx 6.2 (although for some of these observations it is possible that the foreground emission is contaminated by non-Local Bubble emission from Loop I). The higher temperature observed towards other directions is inconsistent with our data, when combined with a FUSE measurement of the Galactic halo O VI intensity. This therefore suggests that the Local Bubble is thermally anisotropic. Our data are unable to rule out a non-equilibrium model in which the plasma is underionized. However, an overionized recombining plasma model, while observationally acceptable for certain densities and temperatures, generally gives an implausibly young age for the Local Bubble (\la 6 \times 10^5 yr).Comment: Accepted for publication in the Astrophysical Journal. 16 pages, 9 figure
    corecore