165 research outputs found

    Improved interlayer performance of short carbon fiber reinforced composites with bio-inspired structured interfaces

    Get PDF
    The weak layer interfaces of 3D-printed short carbon fiber (SCF) reinforced polymer composites have remained an issue due to planar layer printing by traditional 3D printers. Recently, multi-axis 3D printing technology which can realize non-planar layer printing has been developed. This study’s aim was to evaluate and compare the bonding performance of non-planar interfaces produced by multi-axis 3D printing with that of planar interfaces. The tested non-planar interfaces were designed as bio-inspired structured interfaces (BISIs) based on microstructural interfacial elements in biological materials. The standard specimens with the 0°/90° and 0° infill line directions were printed by a robotic arm multi-axis 3D printer. Double cantilever beam (DCB) and end-notched flexure (ENF) tests were conducted to obtain Mode Ⅰ and Mode Ⅱ interlaminar toughness of SCF-reinforced composites. Test results showed that the critical energy release rates of the integrally formed BISI were significantly improved compared with the planar interface (PLAI) for both Mode I and Mode II delamination. In particular, the BISI with 0° infill line direction exhibited the greatest increase in critical energy release rate, and the damaged areas were spatially swept through the curved interfaces of the BISI with different infill line directions by scanning electron microscopy (SEM) and computed tomography (CT), which showed that the higher critical energy release rate was always accompanied with a larger damaged area. In addition, the tensile and flexural properties of 0°-infilled PLAI and BISI specimens were also measured. This work provides an in-depth investigation of the PLAI and BISI properties of SCF-reinforced composites, demonstrating the potential benefits of integrally formed BISI by multi-axis 3D printing and fostering new perspectives to enhance layer interfaces of 3D printed composites

    Ecosystem multifunctionality and soil microbial communities in response to ecological restoration in an alpine degraded grassland

    Get PDF
    Linkages between microbial communities and multiple ecosystem functions are context-dependent. However, the impacts of different restoration measures on microbial communities and ecosystem functioning remain unclear. Here, a 14-year long-term experiment was conducted using three restoration modes: planting mixed grasses (MG), planting shrub with Salix cupularis alone (SA), and planting shrub with Salix cupularis plus planting mixed grasses (SG), with an extremely degraded grassland serving as the control (CK). Our objective was to investigate how ecosystem multifunctionality and microbial communities (diversity, composition, and co-occurrence networks) respond to different restoration modes. Our results indicated that most of individual functions (i.e., soil nutrient contents, enzyme activities, and microbial biomass) in the SG treatment were significantly higher than in the CK treatment, and even higher than MG and SA treatments. Compared with the CK treatment, treatments MG, SA, and SG significantly increased the multifunctionality index on average by 0.57, 0.23 and 0.76, respectively. Random forest modeling showed that the alpha-diversity and composition of bacterial communities, rather than fungal communities, drove the ecosystem multifunctionality. Moreover, we found that both the MG and SG treatments significantly improved bacterial network stability, which exhabited stronger correlations with ecosystem multifunctionality compared to fungal network stability. In summary, this study demonstrates that planting shrub and grasses altogether is a promising restoration mode that can enhance ecosystem multifunctionality and improve microbial diversity and stability in the alpine degraded grassland

    Bridging Data-Driven and Knowledge-Driven Approaches for Safety-Critical Scenario Generation in Automated Vehicle Validation

    Full text link
    Automated driving vehicles~(ADV) promise to enhance driving efficiency and safety, yet they face intricate challenges in safety-critical scenarios. As a result, validating ADV within generated safety-critical scenarios is essential for both development and performance evaluations. This paper investigates the complexities of employing two major scenario-generation solutions: data-driven and knowledge-driven methods. Data-driven methods derive scenarios from recorded datasets, efficiently generating scenarios by altering the existing behavior or trajectories of traffic participants but often falling short in considering ADV perception; knowledge-driven methods provide effective coverage through expert-designed rules, but they may lead to inefficiency in generating safety-critical scenarios within that coverage. To overcome these challenges, we introduce BridgeGen, a safety-critical scenario generation framework, designed to bridge the benefits of both methodologies. Specifically, by utilizing ontology-based techniques, BridgeGen models the five scenario layers in the operational design domain (ODD) from knowledge-driven methods, ensuring broad coverage, and incorporating data-driven strategies to efficiently generate safety-critical scenarios. An optimized scenario generation toolkit is developed within BridgeGen. This expedites the crafting of safety-critical scenarios through a combination of traditional optimization and reinforcement learning schemes. Extensive experiments conducted using Carla simulator demonstrate the effectiveness of BridgeGen in generating diverse safety-critical scenarios

    The 2-Aminoethoxydiphenyl Borate Analog Dpb161 Blocks Storeoperated Ca 2+ Entry In Acutely Dissociated Rat Submandibular Cells

    Get PDF
    Cellular Ca 2+ signals play a critical role in cell physiology and pathology. In most non-excitable cells, store-operated Ca 2+ entry (SOCE) is an important mechanism by which intracellular Ca 2+ signaling is regulated. However, few drugs can selectively modulate SOCE. 2-Aminoethoxydiphenyl borate (2APB) and its analogs (DPB162 and DPB163) have been reported to inhibit SOCE. Here, we examined the effects of another 2-APB analog, DPB161 on SOCE in acutely-isolated rat submandibular cells. Both patch-clamp recordings and Ca 2+ imaging showed that upon removal of extracellular Ca 2+ ([Ca 2+ ] o =0), rat submandibular cells were unable to maintain ACh-induced Ca 2+ oscillations, but restoration of [Ca 2+ ] o to refill Ca 2+ stores enable recovery of these Ca 2+ oscillations. However, addition of 50 μM DPB161 with [Ca 2+ ] o to extracellular solution prevented the refilling of Ca 2+ store. Fura-2 Ca 2+ imaging showed that DPB161 inhibited SOCE in a concentration-dependent manner. After depleting Ca 2+ stores by thapsigargin treatment, bath perfusion of 1 mM Ca 2+ induced [Ca 2+ ] i elevation in a manner that was prevented by DPB161. Collectively, these results show that the 2-APB analog DPB161 blocks SOCE in rat submandibular cells, suggesting that this compound can be developed as a pharmacological tool for the study of SOCE function and as a new therapeutic agent for treating SOCE-associated disorders

    Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys.

    Get PDF
    Differing from as-cast and solid-solution alloys with coarse eutectic phases (Mg17Al12), a single-phase structure is attained in Mg-25wt.%Al alloy after ultrahigh-pressure solid-solution (USS, 800 oC, 4GPa). This USSed Mg-25wt.%Al sample exhibits a prominent age-hardening response due to the nano-scaled Mg17Al12 particles. Three testing methods confirm that USS-aged Mg-25wt.%Al alloy shows good corrosion resistance, which overwhelms the majority of Mg-based alloys reported so far, near to high purity Mg. The main reason is attributed to the formation of Al-rich oxide layer, wherein residual stress and pitting corrosion are eliminated. It provides a new avenue for developing corrosion resistant Mg alloys

    Ecosystem multifunctionality and soil microbial communities in response to ecological restoration in an alpine degraded grassland

    Get PDF
    Linkages between microbial communities and multiple ecosystem functions are context-dependent. However, the impacts of different restoration measures on microbial communities and ecosystem functioning remain unclear. Here, a 14-year long-term experiment was conducted using three restoration modes: planting mixed grasses (MG), planting shrub with Salix cupularis alone (SA), and planting shrub with Salix cupularis plus planting mixed grasses (SG), with an extremely degraded grassland serving as the control (CK). Our objective was to investigate how ecosystem multifunctionality and microbial communities (diversity, composition, and co-occurrence networks) respond to different restoration modes. Our results indicated that most of individual functions (i.e., soil nutrient contents, enzyme activities, and microbial biomass) in the SG treatment were significantly higher than in the CK treatment, and even higher than MG and SA treatments. Compared with the CK treatment, treatments MG, SA, and SG significantly increased the multifunctionality index on average by 0.57, 0.23 and 0.76, respectively. Random forest modeling showed that the alpha-diversity and composition of bacterial communities, rather than fungal communities, drove the ecosystem multifunctionality. Moreover, we found that both the MG and SG treatments significantly improved bacterial network stability, which exhabited stronger correlations with ecosystem multifunctionality compared to fungal network stability. In summary, this study demonstrates that planting shrub and grasses altogether is a promising restoration mode that can enhance ecosystem multifunctionality and improve microbial diversity and stability in the alpine degraded grassland

    Comprehending the cuproptosis and cancer-immunity cycle network: delving into the immune landscape and its predictive role in breast cancer immunotherapy responses and clinical endpoints

    Get PDF
    BackgroundThe role of cuproptosis, a phenomenon associated with tumor metabolism and immunological identification, remains underexplored, particularly in relation to the cancer-immunity cycle (CIC) network. This study aims to rigorously examine the impact of the cuproptosis-CIC nexus on immune reactions and prognostic outcomes in patients with breast cancer (BC), striving to establish a comprehensive prognostic model.MethodsIn the study, we segregated data obtained from TCGA, GEO, and ICGC using CICs retrieved from the TIP database. We constructed a genetic prognostic framework using the LASSO-Cox model, followed by its validation through Cox proportional hazards regression. This framework’s validity was further confirmed with data from ICGC and GEO. Explorations of the tumor microenvironment were carried out through the application of ESTIMATE and CIBERSORT algorithms, as well as machine learning techniques, to identify potential treatment strategies. Single-cell sequencing methods were utilized to delineate the spatial distribution of key genes within the various cell types in the tumor milieu. To explore the critical role of the identified CICs, experiments were conducted focusing on cell survival and migration abilities.ResultsIn our research, we identified a set of 4 crucial cuproptosis-CICs that have a profound impact on patient longevity and their response to immunotherapy. By leveraging these identified CICs, we constructed a predictive model that efficiently estimates patient prognoses. Detailed analyses at the single-cell level showed that the significance of CICs. Experimental approaches, including CCK-8, Transwell, and wound healing assays, revealed that the protein HSPA9 restricts the growth and movement of breast cancer cells. Furthermore, our studies using immunofluorescence techniques demonstrated that suppressing HSPA9 leads to a notable increase in ceramide levels.ConclusionThis research outlines a network of cuproptosis-CICs and constructs a predictive nomogram. Our model holds great promise for healthcare professionals to personalize treatment approaches for individuals with breast cancer. The work provides insights into the complex relationship between the cuproptosis-CIC network and the cancer immune microenvironment, setting the stage for novel approaches to cancer immunotherapy. By focusing on the essential gene HSPA9 within the cancer-immunity cycle, this strategy has the potential to significantly improve the efficacy of treatments against breast cancer
    • …
    corecore