2 research outputs found
POTs: Protective Optimization Technologies
Algorithmic fairness aims to address the economic, moral, social, and
political impact that digital systems have on populations through solutions
that can be applied by service providers. Fairness frameworks do so, in part,
by mapping these problems to a narrow definition and assuming the service
providers can be trusted to deploy countermeasures. Not surprisingly, these
decisions limit fairness frameworks' ability to capture a variety of harms
caused by systems.
We characterize fairness limitations using concepts from requirements
engineering and from social sciences. We show that the focus on algorithms'
inputs and outputs misses harms that arise from systems interacting with the
world; that the focus on bias and discrimination omits broader harms on
populations and their environments; and that relying on service providers
excludes scenarios where they are not cooperative or intentionally adversarial.
We propose Protective Optimization Technologies (POTs). POTs provide means
for affected parties to address the negative impacts of systems in the
environment, expanding avenues for political contestation. POTs intervene from
outside the system, do not require service providers to cooperate, and can
serve to correct, shift, or expose harms that systems impose on populations and
their environments. We illustrate the potential and limitations of POTs in two
case studies: countering road congestion caused by traffic-beating
applications, and recalibrating credit scoring for loan applicants.Comment: Appears in Conference on Fairness, Accountability, and Transparency
(FAT* 2020). Bogdan Kulynych and Rebekah Overdorf contributed equally to this
work. Version v1/v2 by Seda G\"urses, Rebekah Overdorf, and Ero Balsa was
presented at HotPETS 2018 and at PiMLAI 201