3,600 research outputs found

    Application of Cryogenic Treatment to Extend the Life of the TiAlN-Coated Tungsten Carbide Milling Cutter

    Get PDF
    Cutting tools are important to the manufacturing industry since they will affect production efficiency and product quality. Cryogenic treatment can improve the material properties by decreasing residual stress, stabilizing dimensional accuracy, and increasing wear resistance. The purpose of this study is to investigate the feasibility and effect of cryogenic treatment on the performance of TiAlN-coated tungsten carbide milling cutters for machining the Inconel alloy 625 in terms of different testing methods (e.g., hardness, wear resistance, residual stress, microstructure, and tool life test). Experimental results indicate that after cryogenic treatment there is less wear, the microstructure is denser, residual stress is decreased, the adhesion of coating and tungsten carbide is improved, and the tool life is effectively improved

    Self-limited oxide formation in Ni(111) oxidation

    Full text link
    The oxidation of the Ni(111) surface is studied experimentally with low energy electron microscopy and theoretically by calculating the electron reflectivity for realistic models of the NiO/Ni(111) surface with an ab-initio scattering theory. Oxygen exposure at 300 K under ultrahigh-vacuum conditions leads to the formation of a continuous NiO(111)-like film consisting of nanosized domains. At 750 K, we observe the formation of a nano-heterogeneous film composed primarily of NiO(111)-like surface oxide nuclei, which exhibit virtually the same energy-dependent reflectivity as in the case of 300 K and which are separated by oxygen-free Ni(111) terraces. The scattering theory explains the observed normal incidence reflectivity R(E) of both the clean and the oxidized Ni(111) surface. At low energies R(E) of the oxidized surface is determined by a forbidden gap in the k_parallel=0 projected energy spectrum of the bulk NiO crystal. However, for both low and high temperature oxidation a rapid decrease of the reflectivity in approaching zero kinetic energy is experimentally observed. This feature is shown to characterize the thickness of the oxide layer, suggesting an average oxide thickness of two NiO layers.Comment: 10 pages (in journal format), 9 figure

    Activated O2 dissociation and formation of oxide islands on the Be(0001) surface: Another atomistic model for metal oxidation

    Full text link
    By simulating the dissociation of O2 molecules on the Be(0001) surface using the first-principles molecular dynamics approach, we propose a new atomistic model for the surface oxidation of sp metals. In our model, only the dissociation of the first oxygen molecule needs to overcome an energy barrier, while the subsequent oxygen molecules dissociate barrierlessly around the adsorption area. Consequently, oxide islands form on the metal surface, and grow up in a lateral way. We also discover that the firstly dissociated oxygen atoms are not so mobile on the Be(0001) surface, as on the Al(111) surface. Our atomistic model enlarges the knowledge on metal surface oxidations by perfectly explaining the initial stage during the surface oxidation of Be, and might be applicable to some other sp metal surfaces.Comment: 5 pages, 4 figure

    Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices

    Get PDF
    This paper addresses the problem of accelerating large artificial neural networks (ANN), whose topology and weights can evolve via the use of a genetic algorithm. The proposed digital hardware architecture is capable of processing any evolved network topology, whilst at the same time providing a good trade off between throughput, area and power consumption. The latter is vital for a longer battery life on mobile devices. The architecture uses multiple parallel arithmetic units in each processing element (PE). Memory partitioning and data caching are used to minimise the effects of PE pipeline stalling. A first order minimax polynomial approximation scheme, tuned via a genetic algorithm, is used for the activation function generator. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design

    Probing the inter-layer exciton physics in a MoS2_2/MoSe2_2/MoS2_2 van der Waals heterostructure

    Full text link
    Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of inter-layer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe2_2/WSe2_2 heterostructures. Here we report on the observation of long lived inter-layer exciton emission in a MoS2_2/MoSe2_2/MoS2_2 trilayer van der Waals heterostructure. The inter-layer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power and temperature dependence of the inter-layer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long lived valley polarization of inter-layer exciton. Intriguingly, the inter-layer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the inter-layer exciton emission.Comment: 19 pages, 3 figures. Just accepted for publication in Nano Letters (http://pubs.acs.org/doi/10.1021/acs.nanolett.7b03184

    Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor

    Get PDF
    Systematic ac susceptibility measurements have been performed on a MgB2_2 bulk sample. We demonstrate that the flux creep activation energy is a nonlinear function of the current density U(j)j0.2U(j)\propto j^{-0.2}, indicating a nonlogarithmic relaxation of the current density in this material. The dependence of the activation energy on the magnetic field is determined to be a power law U(B)B1.33U(B)\propto B^{-1.33}, showing a steep decline in the activation energy with the magnetic field, which accounts for the steep drop in the critical current density with magnetic field that is observed in MgB2_2. The irreversibility field is also found to be rather low, therefore, the pinning properties of this new material will need to be enhanced for practical applications.Comment: 11 pages, 6 figures, Revtex forma

    R+R2R + R^2 Gravity as R+R + Backreaction

    Full text link
    Quadratic theory of gravity is a complicated constraint system. We investigate some consequences of treating quadratic terms perturbatively (higher derivative version of backreaction effects). This approach is shown to overcome some well known problems associated with higher derivative theories, i.e., the physical gravitational degree of freedom remains unchanged from those of Einstein gravity. Using such an interpretation of R+βR2R + \beta R^2 gravity, we investigate a classical and Wheeler DeWitt evolution of R+βR2R + \beta R^2 gravity for a particular sign of β\beta, corresponding to non- tachyon case. Matter is described by a phenomenological ρa(t)n\rho \propto a(t)^{-n}. It is concluded that both the Friedmann potential U(a)U(a) (a˙2+2U(a)=0 {\dot a}^2 + 2U(a) = 0 ) and the Wheeler DeWitt potential W(a)W(a) ([2a2+2W(a)]ψ(a)=0\left[-{\partial^2\over \partial a^2} + 2W(a)\right]\psi (a) =0 ) develop repulsive barriers near a0a\approx 0 for n>4n>4 (i.e., p>13ρ p > {1\over 3}\rho ). The interpretations is clear. Repulsive barrier in U(a)U(a) implies that a contracting FRW universe (k>0,k=0,k<0k>0, k=0, k<0) will bounce to an expansion phase without a total gravitational collapse. Repulsive barrier in W(a)W(a) means that a0a \approx 0 is a classically forbidden region. Therefore, probability of finding a universe with the big bang singularity (a=0a=0 ) is exponentially suppressed.Comment: Accepted for publication in Phy. Rev. D.,18 pages, 6 figures, Latex fil

    Thermodynamics and magnetic field profiles in low-kappa type-II superconductors

    Full text link
    Two-dimensional low-kappa type-II superconductors are studied numerically within the Eilenberger equations of superconductivity. Depending on the Ginzburg-Landau parameter \kappa=\lambda/\xi vortex-vortex interaction can be attractive or purely repulsive. The sign of interaction is manifested as a first (second) order phase transition from Meissner to the mixed state. Temperature and field dependence of the magnetic field distribution in low-kappa type-II superconductors with attractive intervortex interaction is calculated. Theoretical results are compared to the experiment.Comment: 4 pages, 3 figure
    corecore