348 research outputs found

    Evaluation of potential rice (Oryza sativa L.) genotypes with different levels of N under rainfed shallow lowland situation

    Get PDF
    A field experiment was conducted to evaluate the yield of potential rice genotypes during kharif season, 2012 and 2013 at Rice Research Station, Bankura, West Bengal, India on sandy loam soil of slightly acidic in reaction (pH: 5.7). This experiment was conducted in split-plot design with three replications. The results indicated that 105 kg N ha-1, the yield attributes recorded maximum number of panicles m-2 (307.9), panicle length (25.3cm), panicle weight (2.32g), number of filled grains per panicle (117.8), 1000-grains weight (24.5g) and finally recorded highest grain yield (4.80 t ha-1) than lower fertilities. While, 70 kg N ha-1 was remained closed to 105 kg N ha-1 in number of panicles m-2, panicle weight and number of filled grains per panicle. Among the potential rice varieties ‘Sampriti’ (IET 21987) recorded the highest grain yield (4.66 t ha-1) under rainfed shallow lowland situation of red and laterite zone of West Bengal. The highest grain yield (4.80 t ha-1) was obtained at 105 kg N ha-1and it was statistically at par with 70 kg N ha-1 (4.62 t ha-1). Therefore, the increased in grain yield of rice by the varieties due to overall respective performance in growth and appreciable improvement in the yield attributing characters

    Secrecy performance of α − κ − µ shadowed fading channel

    Get PDF
    In this paper, the physical layer security aspects of a wireless framework over α − κ − µ shadowed (AKMS) fading channel are examined by acquiring closed-form novel expressions of average secrecy capacity, secure outage probability (SOP), and strictly positive secrecy capacity. The lower bound of SOP is derived along with the asymptotic expression of SOP at the high signal-to-noise ratio regime in order to achieve secrecy diversity gain. Capitalizing on these expressions, the consequences due to the simultaneous occurrence of fading and shadowing are quantified. Finally, Monte-Carlo simulations are demonstrated to assess the correctness of the expressions

    Spectral properties of XRBs in dusty early-type galaxies

    Full text link
    We present spectral properties of a total of 996 discrete X-ray sources resolved in a sample of 23 dusty early-type galaxies selected from different environments. The combined X-ray luminosity function of all the 996 sources within the optical \D of the sample galaxies is well described by a broken power law with a break at 2.71×\times\te \lum and is close to the Eddington limit for a 1.4\Msun neutron star. Out of the 996, about 63\p of the sources have their X-ray luminosities in the range between few\tim\ts to 2.0 \tim \tn \lum and are like normal LMXBs; about 15-20\p with luminosities << few \tim 1037^{37} \lum are either super-soft or very-soft sources; while the remainder represents ULXs, HMXBs or unrelated heavily absorbed harder sources. More XRBs have been detected in the galaxies from isolated regions while those from rich groups and clusters host very few sources. The X-ray color-color plot for these sources has enabled us to classify them as SNRs, LMXBs, HMXBs and heavily absorbed AGNs. The composite X-ray spectra of the resolved sources within \D region of each of the galaxies are best represented by a power law with the average photon spectral index close to 1.65. The contribution of the resolved sources to the total X-ray luminosity of their host is found to vary greatly, in the sense that, in galaxies like NGC 3379 the XRB contribution is about 81\p while for NGC 5846 it is only 2\p. A correlation has been evidenced between the cumulative X-ray luminosity of the resolved sources against the star formation rate and the Ks band luminosity of the target galaxies indicating their primordial origin.Comment: 15 Pages, 6 Figures & 2 Tables, Accepted for publication in New Astronom

    QCD Form Factors and Hadron Helicity Non-Conservation

    Get PDF
    Recent data for the ratio R(Q)=QF2(Q2)/F1(Q2)R(Q)= QF_{2}(Q^{2})/F_{1}(Q^{2}) shocked the community by disobeying expectations held for 50 years. We examine the status of perturbative QCD predictions for helicity-flip form factors. Contrary to common belief, we find there is no rule of hadron helicity conservation for form factors. Instead the analysis yields an inequality that the leading power of helicity-flip processes may equal or exceed the power of helicity conserving processes. Numerical calculations support the rule, and extend the result to the regime of laboratory momentum transfer Q2Q^{2}. Quark orbital angular momentum, an important feature of the helicity flip processes, may play a role in all form factors at large Q2Q^{2}, depending on the quark wave functions.Comment: 25 pages, 5 figure

    Microstructure and interfacial reactions during active metal brazing of stainless steel to titanium

    Get PDF
    Microstructural evolution and interfacial reactions during active metal vacuum brazing of Ti (grade-2) and stainless steel (SS 304L) using a Ag-based alloy containing Cu, Ti, and Al was investigated. A Ni-depleted solid solution layer and a discontinuous layer of (Ni,Fe)2TiAl intermetallic compound formed on the SS surface and adjacent to the SS-braze alloy interface, respectively. Three parallel contiguous layers of intermetallic compounds, CuTi, AgTi, and (Ag,Cu)Ti2, formed at the Ti-braze alloy interface. The diffusion path for the reaction at this interface was established. Transmission electron microscopy revealed formation of nanocrystals of Ag-Cu alloy of size ranging between 20 and 30 nm in the unreacted braze alloy layer. The interdiffusion zone of β-Ti(Ag,Cu) solid solution, formed on the Ti side of the joint, showed eutectoid decomposition to lamellar colonies of α-Ti and internally twinned (Cu,Ag)Ti2 inter- metallic phase, with an orientation relationship between the two. Bend tests indicated that the failure in the joints occurred by formation and propagation of the crack mostly along the Ti- braze alloy interface, through the (Ag,Cu)Ti2 phase layer

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0
    corecore