325 research outputs found
Neutron Streaming Through Labyrinth from a Cyclotron Room
開始ページ、終了ページ: 冊子体のページ付
Nonmagnetic-Defect-Induced Magnetism in Graphene
It is shown that a strong impurity potential induces short-range
antiferromagnetic (ferrimagnetic) order around itself in a Hubbard model on a
half-filled honeycomb lattice. This implies that short-range magnetic order is
induced in monolayer graphene by a nonmagnetic defect such as a vacancy with
full hydrogen termination or a chemisorption defect.Comment: 5 pages, 8 figure
Synthesis and properties of radiopaque polymer hydrogels: polyion complexes of copolymers of acrylamide derivatives having triiodophenyl and carboxyl groups and p-styrene sulfonate and polyallylamine
In order to pursue a possibility of application of radiopaque polymer hydrogels to vascular embolization, studies were done on synthesis of iodine-containing copolyanions and properties of their hydrogels with polycation via formation of polyion complexes. Acrylamide derivatives having triiodophenyl and carboxyl groups were synthesized and copolymerized with sodium styrene sulfonate at various molar ratios of initiator to monomer and temperatures. Hydrogels were prepared by mixing aqueous solutions of the obtained radiopaque copolyanions and polyallylamine. Embolization was examined by injection of these hydrogels into vein of a removed porcine kidney as a preliminary test for transcatheter arterial embolization (TAE) for hepatocellular carcinoma. It was found that the hydrogels prepared from the copolycation obtained under particular conditions give high X-ray contrasts of the vein and remained there, though copolycations with low molecular weights had a tendency to drain through the capillaries to the peripheral tissues. It is therefore concluded that the hydrogels examined in the present study are promising for vascular embolization
XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells
XBP-1, a transcription factor that drives the unfolded protein response (UPR), is activated in B cells when they differentiate to plasma cells. Here, we show that in the B cells, whose capacity to secrete IgM has been eliminated, XBP-1 is induced normally on induction of differentiation, suggesting that activation of XBP-1 in B cells is a differentiation-dependent event, but not the result of a UPR caused by the abundant synthesis of secreted IgM. Without XBP-1, B cells fail to signal effectively through the B-cell receptor. The signalling defects lead to aberrant expression of the plasma cell transcription factors IRF4 and Blimp-1, and altered levels of activation-induced cytidine deaminase and sphingosine-1-phosphate receptor. Using XBP-1-deficient/Blimp-1-GFP transgenic mice, we find that XBP-1-deficient B cells form antibody-secreting plasmablasts in response to initial immunization; however, these plasmablasts respond ineffectively to CXCL12. They fail to colonize the bone marrow and do not sustain antibody production. These findings define the role of XBP-1 in normal plasma cell development and have implications for management of B-cell malignancies
Room-temperature ferromagnetism in graphite driven by 2D networks of point defects
Ferromagnetism in carbon-based materials is appealing for both applications
and fundamental science purposes because carbon is a light and bio-compatible
material that contains only s and p electrons in contrast to traditional
ferromagnets based on 3d or 4f electrons. Here we demonstrate direct evidence
for ferromagnetic order locally at defect structures in highly oriented
pyrolytic graphite (HOPG) with magnetic force microscopy and in bulk
magnetization measurements at room temperature. Magnetic impurities have been
excluded as the origin of the magnetic signal after careful analysis supporting
an intrinsic magnetic behavior of carbon. The observed ferromagnetism has been
attributed to originate from unpaired electron spins localized at grain
boundaries of HOPG. Grain boundaries form two-dimensional arrays of point
defects, where their spacing depends on the mutual orientation of two grains.
Depending on the distance between these point defects, scanning tunneling
spectroscopy of grain boundaries showed two intense split localized states for
small distances between defects (< 4 nm) and one localized state at the Fermi
level for large distances between defects (> 4 nm).Comment: 19 pages, 5 figure
BINGO: A code for the efficient computation of the scalar bi-spectrum
We present a new and accurate Fortran code, the BI-spectra and
Non-Gaussianity Operator (BINGO), for the efficient numerical computation of
the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field
inflationary models involving the canonical scalar field. The code can
calculate all the different contributions to the bi-spectrum and the parameter
f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing
firstly on the equilateral limit, we illustrate the accuracy of BINGO by
comparing the results from the code with the spectral dependence of the
bi-spectrum expected in power law inflation. Then, considering an arbitrary
triangular configuration, we contrast the numerical results with the analytical
expression available in the slow roll limit, for, say, the case of the
conventional quadratic potential. Considering a non-trivial scenario involving
deviations from slow roll, we compare the results from the code with the
analytical results that have recently been obtained in the case of the
Starobinsky model in the equilateral limit. As an immediate application, we
utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL}
to discriminate between various inflationary models that admit departures from
slow roll and lead to similar features in the scalar power spectrum. We close
with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed,
extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO
code is available online at
http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm
Molecules participating in insect immunity of Sarcophaga peregrina
Pricking the body wall of Sarcophaga
peregrina (flesh fly) larvae with a needle activated the immune system of this insect and induced various immune molecules, including antibacterial proteins, in the hemolymph. In this review, I summarize and discuss the functions of these immune molecules, with particular emphasis on the dual roles of some of these molecules in defense and development
First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures
Understanding the magnetic properties of graphenic nanostructures is
instrumental in future spintronics applications. These magnetic properties are
known to depend crucially on the presence of defects. Here we review our recent
theoretical studies using density functional calculations on two types of
defects in carbon nanostructures: Substitutional doping with transition metals,
and sp-type defects created by covalent functionalization with organic and
inorganic molecules. We focus on such defects because they can be used to
create and control magnetism in graphene-based materials. Our main results are
summarized as follows: i)Substitutional metal impurities are fully understood
using a model based on the hybridization between the states of the metal
atom and the defect levels associated with an unreconstructed D carbon
vacancy. We identify three different regimes, associated with the occupation of
distinct hybridization levels, which determine the magnetic properties obtained
with this type of doping; ii) A spin moment of 1.0 is always induced by
chemical functionalization when a molecule chemisorbs on a graphene layer via a
single C-C (or other weakly polar) covalent bond. The magnetic coupling between
adsorbates shows a key dependence on the sublattice adsorption site. This
effect is similar to that of H adsorption, however, with universal character;
iii) The spin moment of substitutional metal impurities can be controlled using
strain. In particular, we show that although Ni substitutionals are
non-magnetic in flat and unstrained graphene, the magnetism of these defects
can be activated by applying either uniaxial strain or curvature to the
graphene layer. All these results provide key information about formation and
control of defect-induced magnetism in graphene and related materials.Comment: 40 pages, 17 Figures, 62 References; Chapter 2 in Topological
Modelling of Nanostructures and Extended Systems (2013) - Springer, edited by
A. R. Ashrafi, F. Cataldo, A. Iranmanesh, and O. Or
Hijacked then lost in translation:the plight of the recombinant host cell in membrane protein structural biology projects
Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells
Spin-half paramagnetism in graphene induced by point defects
Using magnetization measurements, we show that point defects in graphene -
fluorine adatoms and irradiation defects (vacancies) - carry magnetic moments
with spin 1/2. Both types of defects lead to notable paramagnetism but no
magnetic ordering could be detected down to liquid helium temperatures. The
induced paramagnetism dominates graphene's low-temperature magnetic properties
despite the fact that maximum response we could achieve was limited to one
moment per approximately 1000 carbon atoms. This limitation is explained by
clustering of adatoms and, for the case of vacancies, by losing graphene's
structural stability.Comment: 14 pages, 14 figure
- …