325 research outputs found

    Neutron Streaming Through Labyrinth from a Cyclotron Room

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Nonmagnetic-Defect-Induced Magnetism in Graphene

    Full text link
    It is shown that a strong impurity potential induces short-range antiferromagnetic (ferrimagnetic) order around itself in a Hubbard model on a half-filled honeycomb lattice. This implies that short-range magnetic order is induced in monolayer graphene by a nonmagnetic defect such as a vacancy with full hydrogen termination or a chemisorption defect.Comment: 5 pages, 8 figure

    Synthesis and properties of radiopaque polymer hydrogels: polyion complexes of copolymers of acrylamide derivatives having triiodophenyl and carboxyl groups and p-styrene sulfonate and polyallylamine

    Get PDF
    In order to pursue a possibility of application of radiopaque polymer hydrogels to vascular embolization, studies were done on synthesis of iodine-containing copolyanions and properties of their hydrogels with polycation via formation of polyion complexes. Acrylamide derivatives having triiodophenyl and carboxyl groups were synthesized and copolymerized with sodium styrene sulfonate at various molar ratios of initiator to monomer and temperatures. Hydrogels were prepared by mixing aqueous solutions of the obtained radiopaque copolyanions and polyallylamine. Embolization was examined by injection of these hydrogels into vein of a removed porcine kidney as a preliminary test for transcatheter arterial embolization (TAE) for hepatocellular carcinoma. It was found that the hydrogels prepared from the copolycation obtained under particular conditions give high X-ray contrasts of the vein and remained there, though copolycations with low molecular weights had a tendency to drain through the capillaries to the peripheral tissues. It is therefore concluded that the hydrogels examined in the present study are promising for vascular embolization

    XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells

    Get PDF
    XBP-1, a transcription factor that drives the unfolded protein response (UPR), is activated in B cells when they differentiate to plasma cells. Here, we show that in the B cells, whose capacity to secrete IgM has been eliminated, XBP-1 is induced normally on induction of differentiation, suggesting that activation of XBP-1 in B cells is a differentiation-dependent event, but not the result of a UPR caused by the abundant synthesis of secreted IgM. Without XBP-1, B cells fail to signal effectively through the B-cell receptor. The signalling defects lead to aberrant expression of the plasma cell transcription factors IRF4 and Blimp-1, and altered levels of activation-induced cytidine deaminase and sphingosine-1-phosphate receptor. Using XBP-1-deficient/Blimp-1-GFP transgenic mice, we find that XBP-1-deficient B cells form antibody-secreting plasmablasts in response to initial immunization; however, these plasmablasts respond ineffectively to CXCL12. They fail to colonize the bone marrow and do not sustain antibody production. These findings define the role of XBP-1 in normal plasma cell development and have implications for management of B-cell malignancies

    Room-temperature ferromagnetism in graphite driven by 2D networks of point defects

    Full text link
    Ferromagnetism in carbon-based materials is appealing for both applications and fundamental science purposes because carbon is a light and bio-compatible material that contains only s and p electrons in contrast to traditional ferromagnets based on 3d or 4f electrons. Here we demonstrate direct evidence for ferromagnetic order locally at defect structures in highly oriented pyrolytic graphite (HOPG) with magnetic force microscopy and in bulk magnetization measurements at room temperature. Magnetic impurities have been excluded as the origin of the magnetic signal after careful analysis supporting an intrinsic magnetic behavior of carbon. The observed ferromagnetism has been attributed to originate from unpaired electron spins localized at grain boundaries of HOPG. Grain boundaries form two-dimensional arrays of point defects, where their spacing depends on the mutual orientation of two grains. Depending on the distance between these point defects, scanning tunneling spectroscopy of grain boundaries showed two intense split localized states for small distances between defects (< 4 nm) and one localized state at the Fermi level for large distances between defects (> 4 nm).Comment: 19 pages, 5 figure

    BINGO: A code for the efficient computation of the scalar bi-spectrum

    Full text link
    We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL} to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed, extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO code is available online at http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm

    Molecules participating in insect immunity of Sarcophaga peregrina

    Get PDF
    Pricking the body wall of Sarcophaga peregrina (flesh fly) larvae with a needle activated the immune system of this insect and induced various immune molecules, including antibacterial proteins, in the hemolymph. In this review, I summarize and discuss the functions of these immune molecules, with particular emphasis on the dual roles of some of these molecules in defense and development

    First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures

    Full text link
    Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp3^3-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the dd states of the metal atom and the defect levels associated with an unreconstructed D3h_{3h} carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 μB\mu_B is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.Comment: 40 pages, 17 Figures, 62 References; Chapter 2 in Topological Modelling of Nanostructures and Extended Systems (2013) - Springer, edited by A. R. Ashrafi, F. Cataldo, A. Iranmanesh, and O. Or

    Hijacked then lost in translation:the plight of the recombinant host cell in membrane protein structural biology projects

    Get PDF
    Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells

    Spin-half paramagnetism in graphene induced by point defects

    Get PDF
    Using magnetization measurements, we show that point defects in graphene - fluorine adatoms and irradiation defects (vacancies) - carry magnetic moments with spin 1/2. Both types of defects lead to notable paramagnetism but no magnetic ordering could be detected down to liquid helium temperatures. The induced paramagnetism dominates graphene's low-temperature magnetic properties despite the fact that maximum response we could achieve was limited to one moment per approximately 1000 carbon atoms. This limitation is explained by clustering of adatoms and, for the case of vacancies, by losing graphene's structural stability.Comment: 14 pages, 14 figure
    corecore