23 research outputs found

    Classifying Exoplanets with Gaussian Mixture Model

    Full text link
    Recently, Odrzywolek and Rafelski (arXiv:1612.03556) have found three distinct categories of exoplanets, when they are classified based on density. We first carry out a similar classification of exoplanets according to their density using the Gaussian Mixture Model, followed by information theoretic criterion (AIC and BIC) to determine the optimum number of components. Such a one-dimensional classification favors two components using AIC and three using BIC, but the statistical significance from both the tests is not significant enough to decisively pick the best model between two and three components. We then extend this GMM-based classification to two dimensions by using both the density and the Earth similarity index (arXiv:1702.03678), which is a measure of how similar each planet is compared to the Earth. For this two-dimensional classification, both AIC and BIC provide decisive evidence in favor of three components.Comment: 8 pages, 7 figure

    Two Dimensional Clustering of Gamma-Ray Bursts using durations and hardness

    Full text link
    Gamma-Ray Bursts (GRBs) have been conventionally bifurcated into two distinct categories: ``short'' and ``long'' with durations less than and greater than two seconds respectively. However, there is a lot of literature (although with conflicting results) regarding the existence of a third intermediate class. To investigate this issue, we extend a recent study (arXiv:1612.08235) on classification of GRBs to two dimensions by incorporating the GRB hardness in addition to the observed durations. We carry out this unified analysis on GRB datasets from four detectors, viz. BATSE, RHESSI, Swift (observed and intrinsic frame), and Fermi-GBM. We consider the duration and hardness features in log-scale for each of these datasets and determine the best-fit parameters using Gaussian Mixture Model. This is followed by information theoretic criterion (AIC and BIC) to determine if a three-component fit is favored compared to a two-component one or vice-versa. For BATSE, we find that both AIC and BIC show preference for three components with decisive significance. For Fermi and RHESSI, both AIC and BIC show preference for two components, although the significance is marginal from AIC, but decisive using BIC. For Swift dataset in both the observed and rest frame, we find that three components are favored according to AIC with decisive significance, and two are preferred with BIC with marginal to strong significance.Comment: 13 pages, 10 figures. This is an extension of arXiv:1612.08235 to two-dimension

    A general theory for robust clustering via trimmed mean

    Full text link
    Clustering is a fundamental tool in statistical machine learning in the presence of heterogeneous data. Many recent results focus primarily on optimal mislabeling guarantees, when data are distributed around centroids with sub-Gaussian errors. Yet, the restrictive sub-Gaussian model is often invalid in practice, since various real-world applications exhibit heavy tail distributions around the centroids or suffer from possible adversarial attacks that call for robust clustering with a robust data-driven initialization. In this paper, we introduce a hybrid clustering technique with a novel multivariate trimmed mean type centroid estimate to produce mislabeling guarantees under a weak initialization condition for general error distributions around the centroids. A matching lower bound is derived, up to factors depending on the number of clusters. In addition, our approach also produces the optimal mislabeling even in the presence of adversarial outliers. Our results reduce to the sub-Gaussian case when errors follow sub-Gaussian distributions. To solve the problem thoroughly, we also present novel data-driven robust initialization techniques and show that, with probabilities approaching one, these initial centroid estimates are sufficiently good for the subsequent clustering algorithm to achieve the optimal mislabeling rates. Furthermore, we demonstrate that the Lloyd algorithm is suboptimal for more than two clusters even when errors are Gaussian, and for two clusters when errors distributions have heavy tails. Both simulated data and real data examples lend further support to both of our robust initialization procedure and clustering algorithm.Comment: 51 pages, corrected typo

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Dataset for evaluating fitness index using Adaptive Neuro-Fuzzy Inference System

    No full text
    With the current global downturn, the organizations need to develop new strategies and innovative approaches to ensure that every aspect of sustainability is achieved. For this purpose, the organizations need an indicator that measures the fitness if an organization. The purpose of this project is to analyze the ‘Fitness’ of an organization using the dataset related to leanness, agility and sustainability in ANFIS (Adaptive Neuro-Fuzzy Inference System) in order to determine whether the company is fit enough to sustain in global markets or not. The project does so by integrating both neural networks and fuzzy logic principles with lean, agility and sustainability principles. FIT manufacturing is the integration of Lean, Agile and sustainability manufacturing in one system as a whole which would help in attaining maximum output and sustain effectively in global markets. FIT Manufacturing adopts an integrated approach towards the use of Lean, Agility and Sustainability to achieve a level of fitness that is unique to each company. The database in the paper contains lean, agile and sustainable indices reviewed by experts. FIT does not prescribe that every aspect of Lean, Agile and Sustainability methodologies must be applied to every company, but a selective mix of components will provide the optimum conditions for a company to prosper

    Study of Various Key Process Parameters of FDM 3D Printed Parts using Ultimaker 2+ 3D Printer

    No full text
    This research paper aims to investigate the effect of different Fused Deposition Modelling (FDM) printing parameters on the mechanical properties of printed parts. FDM is one of the most widely used 3D printing technologies due to its versatility and low cost. However, the mechanical properties of FDM printed parts depend largely on the printing parameters used. A series of tensile tests were conducted on FDM printed parts with varying printing parameters such as layer height, infill density, print speed, and nozzle temperature. The results showed that increasing the layer height and infill density improved the mechanical properties of the printed parts, while increasing the print speed decreased the mechanical properties. Nozzle temperature also had a significant effect on the mechanical properties of the printed parts, with a higher temperature resulting in stronger parts. Overall, this research provides valuable insights into the effects of different FDM printing parameters on the mechanical properties of printed parts and can be used to optimize FDM printing for specific applications. The research value of this case study is to obtain the best suitable key process parameters for FDM printing
    corecore