3 research outputs found

    The EDIBLES Survey. VII. A survey of C2 and C3 in interstellar clouds

    Full text link
    We carried out a sensitive survey of C2_2 and C3_3 using the EDIBLES data set. We also expanded our searches to C4_4, C5_5, and 13^{13}C12^{12}C isotopologue in the most molecule-rich sightlines. We fit synthetic spectra generated following a physical excitation model to the C2_2 (2-0) Phillips band to obtain the C2_2 column density (NN) as well as the kinetic temperature (TkinT_\textrm{kin}) and number density (nn) of the host cloud. The C3_3 molecule was measured through its A~−X~\tilde{A} - \tilde{X} (000-000) electronic origin band system. We simulated the excitation of this band with a double-temperature Boltzmann distribution. We present the largest combined survey of C2_2 and C3_3 to date in which the individual transitions can be resolved. In total we detected C2_2 in 51 velocity components along 40 sightlines, and C3_3 in 31 velocity components along 27 sightlines. The two molecules are detected in the same velocity components. We find a very good correlation between NN(C2_2) and NN(C3_3) with Pearson r=0.93r = 0.93 and an average NN(C2_2)/NN(C3_3) ratio of 15.5±\pm1.4. A comparison with the behaviour of the C2_2 DIBs shows that there are no clear differences among sightlines with and without detection of C2_2 and C3_3. This is in direct contrast to the better-studied non-C2_2 DIBs who have reduced strengths in molecule-rich environments. We also identify for the first time the QQ(2), QQ(3), and QQ(4) transitions of the 13^{13}C12^{12}C (2-0) Phillips band in a stacked average spectrum, and estimate the isotopic ratio of carbon 12^{12}C/13^{13}C as 79±\pm8. Our search for the C4_4 and C5_5 optical bands was unsuccessful.Comment: 31 pages, 23 figures. To appear in A&

    The EDIBLES survey V: Line profile variations in the λλ\lambda\lambda5797, 6379, and 6614 diffuse interstellar bands as a tool to constrain carrier sizes

    Get PDF
    Several diffuse interstellar bands (DIBs) have profiles with resolved sub-peaks that resemble rotational bands of large molecules. Analysis of these profiles can constrain the sizes and geometries of the DIB carriers, especially if the profiles exhibit clear variations along lines of sight probing different physical conditions. Using the extensive data set from the EDIBLES survey we searched for systematic variations in the peak-to-peak separation of these sub-peaks for the λλ\lambda\lambda5797, 6379, and 6614 DIBs in lines of sight with a single dominant interstellar cloud. We used the spectra of twelve single-cloud sight lines to measure the peak-to-peak separation in the band profile substructures for these DIBs. We adopted the rotational contour formalism to infer the rotational constant for each DIB carrier and the rotational excitation temperature in the sight lines. We compared these to rotational constants for linear and spherical molecules to estimate the DIB carrier sizes. All three DIBs have peak separations that vary systematically between lines of sight, indicating correlated changes in the rotational excitation temperatures. We derived B6614B_{6614}=(22.2±8.9)×10−3(22.2\pm8.9)\times 10^{-3} cm−1^{-1}, consistent with previous estimates. Assuming a similar rotational temperature for the λ\lambda6614 DIB carrier and assuming a linear carrier, we found B5797linear=(5.1±2.0)×10−3 cm−1_{5797}^{\rm linear}=(5.1\pm2.0)\times10^{-3}~{\rm cm}^{-1} and B6379linear=(2.3±0.9)×10−3 cm−1_{6379}^{\rm linear} =(2.3\pm0.9)\times10^{-3}~{\rm cm}^{-1}. If the carriers of those DIBs however are spherical species, their rotational constants are half that value, B5797spherical=(2.6±1.0)×10−3 cm−1B_{5797}^{\rm spherical} = (2.6\pm1.0)\times10^{-3}~{\rm cm}^{-1} and B6379spherical=(1.1±0.4)×10−3 cm−1B_{6379}^{\rm spherical} = (1.1\pm0.4)\times10^{-3}~{\rm cm}^{-1}. We estimate molecule sizes that range from 7--9 carbon atoms (λ\lambda6614 carrier, linear) to 77--114 carbon atoms (λ\lambda6379, spherical).Comment: 21 pages, 56 figures. Accepted for publication in Astronomy & Astrophysic

    The EDIBLES survey: VII. A survey of C2 and C3 in interstellar clouds

    No full text
    Context. Small linear carbon chain radicals such as C2 and C3 act as both the building blocks and dissociation fragments of larger carbonaceous species. Their rotational excitation traces the temperature and density of local environments. However, these homo-nuclear di- and triatomic species are only accessible through their electronic and vibrational features because they lack a permanent dipole moment, and high signal-to-noise ratio data are necessary as the result of their generally low abundances in the interstellar medium (ISM).Aims. In order to improve our understanding of small carbonaceous species in the ISM, we carried out a sensitive survey of C2 and C3 using the ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) dataset. We also expanded our searches to C4, C5, and the 13C12C isotopologue in the most molecule-rich sightlines.Methods. We fitted synthetic spectra generated following a physical excitation model to the C2 (2-0) Phillips band to obtain the C2 column density (N) as well as the kinetic temperature (Tkin) and number density (n) of the host cloud. The C3 molecule was measured through its à − (000-000) electronic origin band system. We simulated the excitation of this band with a double-temperature Boltzmann distribution.Results. We present the largest combined survey of C2 and C3 to date in which the individual transitions can be resolved. In total, we detected C2 in 51 velocity components along 40 sightlines, and C3 in 31 velocity components along 27 sightlines. Further analysis confirms the two molecules are detected in the same velocity components. We find a very good correlation between N(C2) and N(C3) with a Pearson correlation coefficient r = 0.93 and an average N(C2)/N(C3) ratio of 15.5± 1.4. A comparison with the behaviour of the C2 diffuse interstellar bands (DIBs) shows that there are no clear differences among sightlines with and without detections of C2 and C3. This is in direct contrast to the better-studied non-C2 DIBs, which have reduced strengths in molecule-rich environments, consistent with the idea that the C2 DIBs are indeed a distinguishable DIB family. We also identify, for the first time, the Q(2), Q(3), and Q(4) transitions of the 13C12C (2-0) Phillips band in the stacked average spectrum of molecule-rich sightlines, and estimate the isotopic ratio of carbon 12C/13C to be 79±8, consistent with literature results. At this stage it is not yet possible to identify these transitions in individual sightlines. Our search for the C4 and C5 optical bands was unsuccessful; even in stacked spectra no unambiguous identification could be made
    corecore