48 research outputs found
Dust Stratification in Young Circumstellar Disks
We present high-resolution infrared spectra of four YSOs (T Tau N, T Tau S,
RNO 91, and HL Tau). The spectra exhibit narrow absorption lines of 12CO, 13CO,
and C18O as well as broad emission lines of gas phase12CO. The narrow
absorption lines of CO are shown to originate from the colder circumstellar
gas. We find that the line of sight gas column densities resulting from the CO
absorption lines are much higher than expected for the measured extinction for
each source and suggest the gas to dust ratio is measuring the dust settling
and/or grain coagulation in these extended disks. We provide a model of
turbulence, dust settling and grain growth to explain the results. The
techniques presented here allow us to provide some observationally-motivated
bounds on accretion disk alpha in protostellar systems
Molecular Line Emission from Gravitationally Unstable Protoplanetary Disks
In the era of high resolution submillimeter interferometers, it will soon be
possible to observe the neutral circumstellar medium directly involved in gas
giant planet (GGP) formation at physical scales previously unattainable. In
order to explore possible signatures of gas giant planet formation via disk
instabilities, we have combined a 3D, non-local thermodynamic equilibrium (LTE)
radiative transfer code with a 3D, finite differences hydrodynamical code to
model molecular emission lines from the vicinity of a 1.4 M_J self-gravitating
proto-GGP. Here, we explore the properties of rotational transitions of the
commonly observed dense gas tracer, HCO+. Our main results are the following:
1. Very high lying HCO+ transitions (e.g. HCO+ J=7-6) can trace dense planet
forming clumps around circumstellar disks. Depending on the molecular
abundance, the proto-GGP may be directly imageable by the Atacama Large
Millimeter Array (ALMA). 2. HCO+ emission lines are heavily self-absorbed
through the proto-GGP's dense molecular core. This signature is nearly
ubiquitous, and only weakly dependent on assumed HCO+ abundances. The
self-absorption features are most pronounced at higher angular resolutions.
Dense clumps that are not self-gravitating only show minor self-absorption
features. 3. Line temperatures are highest through the proto-GGP at all assumed
abundances and inclination angles. Conversely, due to self-absorption in the
line, the velocity-integrated intensity may not be. High angular resolution
interferometers such as the Submillimeter Array (SMA) and ALMA may be able to
differentiate between competing theories of gas giant planet formation.Comment: 10 pages, 13 figures; Accepted by Ap
CO Emission from Disks around AB Aurigae and HD 141569: Implications for Disk Structure and Planet Formation Timescales
We present a comparison of CO fundamental rovibrational lines (observed in the M band near 4.7 μm) from the inner circumstellar disks around the Herbig AeBe stars AB Aur and HD 141569. The CO spatial profiles and temperatures constrain the location of the gas for both stars to a distance of less than 50 AU. The CO emission from the disk of the ~4 Myr star AB Aur shows at least two temperature components, the inner disk at a rotational temperature of 1540 ± 80 K and the outer disk at 70 ± 10 K. The hot gas is located near the hot bright inner rim of the disk and the cold gas is located in the outer disk from 8-50 AU. The relative intensities of low-J lines suggest that the cold gas is optically thick. The excitation of CO in both temperature regimes is dominated by infrared fluorescence (resonant scattering). In the more evolved disk around HD 141569, the CO is excited by UV fluorescence. The relative intensity of the CO emission lines implies a rotational temperature of 190 ± 30 K. The resulting column density is ~ 1011 cm-2, indicating approximately 1019 g of CO. The observed line profiles indicate that the inner disk has been cleared of CO gas by stellar radiation out to a minimum of 17 AU. The residual mass of CO suggests that the inner disk of HD 141569 is not in an active phase of planet building but it does not rule out the possibility that giant planet building has previously occurred
Warm-Dense Molecular Gas in the ISM of Starbursts, LIRGs and ULIRGs
The role of star formation in luminous and ultraluminous infrared galaxies is
a hotly debated issue: while it is clear that starbursts play a large role in
powering the IR luminosity in these galaxies, the relative importance of
possible enshrouded AGNs is unknown. It is therefore important to better
understand the role of star forming gas in contributing to the infrared
luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground
and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as
an effective tracer for warm-dense molecular gas heated by active star
formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals,
LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter
Telescope on Mt. Graham, Arizona.
Our main results are the following: 1. We find a nearly linear relation
between the infrared luminosity and warm-dense molecular gas such that the
infrared luminosity increases as the warm-dense molecular gas to the power
0.92; We interpret this to be roughly consistent with the recent results of Gao
& Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128
L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km
s^-1)^-1. If this conversion factor is ~an order of magnitude less, as
suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our
objects may have significant contributions to the L_IR by dust-enshrouded AGNs.Comment: 15 Pages, 2 figures, Accepted for Publication in Ap
Triggered Star Formation in a Double Shell near W51A
We present Heinrich Hertz Telescope CO observations of the shell structure
near the active star-forming complex W51A to investigate the process of star
formation triggered by the expansion of an HII region. The CO observations
confirm that dense molecular material has been collected along the shell
detected in Spitzer IRAC images. The CO distribution shows that the shell is
blown out toward a lower density region to the northwest. Total hydrogen column
density around the shell is high enough to form new stars. We find two CO
condensations with the same central velocity of 59 km/s to the east and north
along the edge of the IRAC shell. We identify two YSOs in early evolutionary
stages (Stage 0/I) within the densest molecular condensation. From the CO
kinematics, we find that the HII region is currently expanding with a velocity
of 3.4 km/s, implying that the shell's expansion age is ~1 Myr. This timescale
is in good agreement with numerical simulations of the expansion of the HII
region (Hosokawa et al. 2006). We conclude that the star formation on the
border of the shell is triggered by the expansion of the HII region.Comment: 9 pages, 10 figures, accepted for publication in Ap
A CO Line and Infrared Continuum Study of the Active Star-Forming Complex W51
We present the results of an extensive observational study of the active
star-forming complex W51 that was observed in the J=2-1 transition of the 12CO
and 13CO molecules over a 1.25 deg x 1.00 deg region with the University of
Arizona Heinrich Hertz Submillimeter Telescope. We use a statistical
equilibrium code to estimate physical properties of the molecular gas. We
compare the molecular cloud morphology with the distribution of infrared (IR)
and radio continuum sources, and find associations between molecular clouds and
young stellar objects (YSOs) listed in Spitzer IR catalogs. The ratios of CO
lines associated with HII regions are different from the ratios outside the
active star-forming regions. We present evidence of star formation triggered by
the expansion of the HII regions and by cloud-cloud collisions. We estimate
that about 1% of the cloud mass is currently in YSOs.Comment: 18 pages, 29 figures; accepted for publication in ApJ
Evidence for chemical processing of precometary icy grains in circumstellar environments of pre-main-sequence stars
We report the detection of a broad absorption feature near 2166/cm in the spectrum of the Taurus cloud cource Elias 18. This pre-main-sequence source is the second in Taurus, the third in our survey, and the fifth known in the sky to show the broad 2166/cm absorption feature. Of equal importance, this feature is not seen toward several other embedded sources in our survey, nor is it seen toward the source Elias 16, located behind the Taurus cloud. Laboratory experiments with interstellar ice analogs show that such a feature is associated with a complex C triple bonded to N containing compound (called X(C triple bonded to N)) that results from high-energy processing (ultraviolet irradiation or ion bombardment) of simple ice components into more complex, organic components. We find a nonlinear anticorrelation between the abundance of X(C triple bonded to N) and frozen CO components in nonpolar lattices. We find no correlation between the abundance of X(C triple bonded to N) and frozen CO in polar lattices. Because the abundances of frozen CO and H2O are strongly correlated with each other and with visual extinction toward sources embedded in and located behind the Taurus molecular cloud, these ice components usually are associated with intracloud material. Our results indicate that X(C triple bonded to N) molecules result from chemical processing of dust grains dominated by nonpolar icy mantles in the local environments of pre-main-sequence stars. Such processing of icy grains in the early solar system may be an important source of organic compounds observed in minor solar system bodies. The delivery of these organic compounds to the surface of the primitive Earth through comet impacts may have provided the raw materials for prebiotic chemistry
The Extended Environment of M17: A Star Formation History
M17 is one of the youngest and most massive nearby star-formation regions in
the Galaxy. It features a bright H II region erupting as a blister from the
side of a giant molecular cloud (GMC). Combining photometry from the Spitzer
GLIMPSE survey with complementary infrared (IR) surveys, we identify candidate
young stellar objects (YSOs) throughout a 1.5 deg x 1 deg field that includes
the M17 complex. The long sightline through the Galaxy behind M17 creates
significant contamination in our YSO sample from unassociated sources with
similar IR colors. Removing contaminants, we produce a highly-reliable catalog
of 96 candidate YSOs with a high probability of association with the M17
complex. We fit model spectral energy distributions to these sources and
constrain their physical properties. Extrapolating the mass function of 62
intermediate-mass YSOs (M >3 Msun), we estimate that >1000 stars are in the
process of forming in the extended outer regions of M17.
From IR survey images from IRAS and GLIMPSE, we find that M17 lies on the rim
of a large shell structure ~0.5 deg in diameter (~20 pc at 2.1 kpc). We present
new maps of CO and 13CO (J=2-1) emission, which show that the shell is a
coherent, kinematic structure associated with M17 at v = 19 km/s. The shell is
an extended bubble outlining the photodissociation region of a faint, diffuse H
II region several Myr old. We provide evidence that massive star formation has
been triggered by the expansion of the bubble. The formation of the massive
cluster ionizing the M17 H II region itself may have been similarly triggered.
We conclude that the star formation history in the extended environment of M17
has been punctuated by successive waves of massive star formation propagating
through a GMC complex.Comment: 31 pages, 15 figures, accepted for publication in ApJ. For a version
with higher-quality figures, see
http://www.astro.wisc.edu/glimpse/Povich2009_M17.pd