11 research outputs found

    Natural Flt3Lg-Based Chimeric Antigen Receptor (Flt3-CAR) T Cells Successfully Target Flt3 on AML Cell Lines

    No full text
    Relapsed/refractory acute myeloid leukemia (AML) cannot be cured with chemotherapy alone, as the blasts survive the treatment. Chimeric antigen receptor (CAR) approaches for AML are being actively developed. CARs promote immune reactions through recognition of the target molecular epitopes at the surface of cancer cells. The recognition involves the extracellular portion of the CAR protein, which corresponds to either the antibody or the physiological binding partner of the targeted antigen. Here, we design a chimeric receptor with a full-length natural Flt3-ligand recognition module that targets Flt3 tyrosine kinase, known as an adverse marker in AML. We demonstrate specific killing of Flt3-positive THP-1 cells by Flt3-CAR T cells and the lack of cytotoxicity towards Flt3-negative U937 cells. We prove that the inherent cytolytic capacity of T cells is essential for the killing. Finally, we confirm the authenticity of targeting by its competitive dose-dependent inhibition with a soluble Flt3-ligand. The developed system can be viewed as a non-immunogenic functional equivalent of scFv-mediated targeting. The robust in vitro antitumor effects of Flt3-CAR T cells, combined with their low off-target cytotoxicity, hold promise for AML treatment

    Natural Flt3Lg-Based Chimeric Antigen Receptor (Flt3-CAR) T Cells Successfully Target Flt3 on AML Cell Lines

    No full text
    Relapsed/refractory acute myeloid leukemia (AML) cannot be cured with chemotherapy alone, as the blasts survive the treatment. Chimeric antigen receptor (CAR) approaches for AML are being actively developed. CARs promote immune reactions through recognition of the target molecular epitopes at the surface of cancer cells. The recognition involves the extracellular portion of the CAR protein, which corresponds to either the antibody or the physiological binding partner of the targeted antigen. Here, we design a chimeric receptor with a full-length natural Flt3-ligand recognition module that targets Flt3 tyrosine kinase, known as an adverse marker in AML. We demonstrate specific killing of Flt3-positive THP-1 cells by Flt3-CAR T cells and the lack of cytotoxicity towards Flt3-negative U937 cells. We prove that the inherent cytolytic capacity of T cells is essential for the killing. Finally, we confirm the authenticity of targeting by its competitive dose-dependent inhibition with a soluble Flt3-ligand. The developed system can be viewed as a non-immunogenic functional equivalent of scFv-mediated targeting. The robust in vitro antitumor effects of Flt3-CAR T cells, combined with their low off-target cytotoxicity, hold promise for AML treatment

    Factors associated with an abnormal finding (LSIL or HSIL) on cervical screening, among women with a test reported at study enrolment.

    No full text
    ā€ <p>Limited to 213 women included in the multivariable model.</p>ā€”<p>Adjusted a priori for age, previous pregnancies, CD4 count, current smoking, oral contraceptive use, HSV-2 and chlamydia and additionally for BV.</p

    Cohort characteristics by cervical screening test report.

    No full text
    ā€ <p>Includes non-cohabiting partnerships;</p>ā€”<p>Previous pregnancies include still births, live births, miscarriages and terminations. OC, oral hormonal contraceptive.</p

    Novel hemizygous CORO1A variant leads to combined immunodeficiency with defective platelet calcium signaling and cell mobility

    No full text
    Background: To date, fewer than 20 patients have been identified as having germline biallelic mutations in the coronin-1A gene (CORO1A) and its protein with clinical features of combined immunodeficiency characterized by T-cell lymphopenia ranging from the severe phenotype to the mild phenotype, recurrent infections, and lymphoproliferative disorders. However, the effects of CORO1A protein disruption on actin-dependent functions in primary cells have not been fully delineated. Objective: We sought to characterize the underlying defects of actin-dependent cellular functions in a female patient with combined immunodeficiency caused by a novel missense variant in the CORO1A gene in combination with a de novo heterozygous microdeletion of chromosome 16p11.2 and also to provide evidence of the pathogenicity of this gene mutation. Methods: To identify the genetic defect, next-generation sequencing followed by Sanger confirmation and array comparative genomic hybridization were performed. Western blot and quantitative PCR tests were used to assess the effects on the protein. Flow cytometry and live microscopy were performed to investigate cellular motility and immune cell counts and function. Results: We demonstrated that the CORO1A hemizygous variant c.19C>T, p. A7C induces significant decreases in cellular levels of the CORO1A protein while leaving mRNA concentrations unaffected. The observed mutation resulted in impaired natural killer cell cytotoxicity and platelet calcium signaling. In addition, primary granulocytes and mesenchymal cells showed significant defects in motility. Conclusion: Collectively, we added new data about the CORO1A gene as a key player in actin cytoskeleton dynamics and cell signaling. Our findings expand the clinical spectrum regarding CORO1A protein deficiency and confirm the importance of a personalized therapeutic approach for each patient
    corecore