112 research outputs found

    Selective resolution of phonon modes in STM-IETS on clean and oxygen-adsorbed Cu(100) surfaces

    Full text link
    The observation of surface phonon dispersion using local probes can provide important information related to local structural and thermal properties. In this study, surface phonon modes on a Cu(100) surface were measured using the inelastic tunneling spectroscopy of scanning tunneling microscopy (STM-IETS) with atomically sharp tips. Different phonon modes were selectively measured depending on the structures of the probing tips or the surfaces. Two different surface phonon modes, at 19.0 meV on a clean Cu(100) surface and at 13.5 meV on an oxygen-adsorbed Cu(100) surface, are explained by the selection rules. Additionally, the spatial variation in STM-IETS showed surface stress relaxation.Comment: 19 pages, 4 figures, supplementary material with 2 figure

    Concomitant Hepatorenal Dysfunction and Malnutrition in Valvular Heart Surgery:Long-Term Prognostic Implications for Death and Heart Failure

    Get PDF
    BACKGROUND: Strategies to improve long-term prediction of heart failure and death in valvular surgery are urgently needed because of an increasing number of procedures globally. This study sought to report the prevalence, changes, and prognostic implications of concomitant hepatorenal dysfunction and malnutrition in valvular surgery. METHODS AND RESULTS: In 909 patients undergoing valvular surgery, 3 groups were defined based on hepatorenal function (the modified model for end-stage liver disease excluding international normalized ratio score) and nutritional status (Controlling Nutritional Status score): normal hepatorenal function and nutrition (normal), hepatorenal dysfunction or malnutrition alone (mild), and concomitant hepatorenal dysfunction and malnutrition (severe). Overall, 32%, 46%, and 19% of patients were classified into normal, mild, and severe groups, respectively. Over a 4.1-year median follow-up, mild and severe groups in-curred a higher risk of mortality (hazard ratio [HR], 3.17 [95% CI, 1.40–7.17] and HR, 9.30 [95% CI, 4.09– 21.16], respectively), cardiovascular death (subdistribution HR, 3.29 [95% CI, 1.14– 9.52] and subdistribution HR, 9.29 [95% CI, 3.09– 27.99]), heart failure hospitalization (subdistribution HR, 2.11 [95% CI, 1.25– 3.55] and subdistribution HR, 3.55 [95% CI, 2.04– 6.16]), and adverse outcomes (HR, 2.11 [95% CI, 1.25– 3.55] and HR, 3.55 [95% CI, 2.04– 6.16]). Modified model for end-stage liver disease excluding international normalized ratio and controlling nutritional status scores improved the predictive ability of European System for Cardiac Operative Risk Evaluation (area under the curve: 0.80 versus 0.73, P<0.001) and Society of Thoracic Surgeons score (area under the curve: 0.79 versus 0.72, P=0.004) for all-cause mortality. One year following surgery (n=707), patients with persistent concomitant hepatorenal dysfunction and malnutrition (severe) experienced worse outcomes than those without.  CONCLUSIONS: Concomitant hepatorenal dysfunction and malnutrition was frequent and strongly linked to heart failure and mortality in valvular surgery

    Broad Resistance to ACCase Inhibiting Herbicides in a Ryegrass Population Is Due Only to a Cysteine to Arginine Mutation in the Target Enzyme

    Get PDF
    BACKGROUND: The design of sustainable weed management strategies requires a good understanding of the mechanisms by which weeds evolve resistance to herbicides. Here we have conducted a study on the mechanism of resistance to ACCase inhibiting herbicides in a Lolium multiflorum population (RG3) from the UK. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of plant phenotypes and genotypes showed that all the RG3 plants (72%) that contained the cysteine to arginine mutation at ACCase codon position 2088 were resistant to ACCase inhibiting herbicides. Whole plant dose response tests on predetermined wild and mutant 2088 genotypes from RG3 and a standard sensitive population indicated that the C2088R mutation is the only factor conferring resistance to all ten ACCase herbicides tested. The associated resistance indices ranged from 13 for clethodim to over 358 for diclofop-methyl. Clethodim, the most potent herbicide was significantly affected even when applied on small mutant plants at the peri-emergence and one leaf stages. CONCLUSION/SIGNIFICANCE: This study establishes the clear and unambiguous importance of the C2088R target site mutation in conferring broad resistance to ten commonly used ACCase inhibiting herbicides. It also demonstrates that low levels "creeping", multigenic, non target site resistance, is not always selected before single gene target site resistance appears in grass weed populations subjected to herbicide selection pressure

    Microfluidic Technologies for Synthetic Biology

    Get PDF
    Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis

    Is impaired energy regulation the core of the metabolic syndrome in various ethnic groups of the USA and Taiwan?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The metabolic syndrome (MetS) concept is widely used in public health and clinical settings without an agreed pathophysiology. We have re-examined the MetS in terms of body fuels, so as to provide a coherent cross-cultural pathogenesis.</p> <p>Methods</p> <p>National Health and Nutrition Examination Survey (NHANES 2001-2) with n = 2254 and Taiwanese National Health Interview Survey (NHIS) sub-set for hypertension, hyperglycemia and hyperlipidemia assessment (TwSHHH 2002), n = 5786, were used to compare different ethnicities according to NCEP-ATPIII (NCEP-tw) criteria for METS. Exploratory factor analysis (EFA) using principal components (PC) was employed to differentiate and unify MetS components across four ethnicities, gender, age-strata, and urban-rural settings.</p> <p>Results</p> <p>The first two factors from the PC analysis (PCA) accounted for from 55.2% (non-Hispanic white) to 63.7% (Taiwanese) of the variance. Rotated factor loadings showed that the six MetS components provided three clusters: the impaired energy regulation (IER) components (waist circumference, WC, fasting triglycerides, TG, and fasting plasma glucose, FPG), systolic and diastolic blood pressures (BPs), and HDL-cholesterol, where the IER components accounted for 25-26% of total variance of MetS components. For the three US ethnic subgroups, factor 1 was mainly determined by IER and HDL-cholesterol, and factor 2 was related to the BP components. For Taiwanese, IER was determinant for both factors, and BPs and HDL-cholesterol were related to factors 1 and 2 respectively.</p> <p>Conclusions</p> <p>There is a MetS core which unifies populations. It comprises WC, TG and FPG as a core, IER, which may be expressed and modulated in various second order ways.</p

    Multi-Variable Multi-Objective Optimization Algorithm for Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor

    No full text
    In this paper, internal division point genetic algorithm (IDP-GA) was proposed to lessen the computational burden of multi-variable multi-objective optimization problem using finite element analysis such as optimal design of electric bicycles. The IDP-GA could consider various objectives with normalized weighted sum method and could reduce the number of function calls with novel crossover strategy and vector-based pattern search method. The superiority of the proposed algorithm was verified by comparing performances with conventional optimization method at two mathematical test functions. Finally, the applicability of the IDP-GA in practical electric machine design was verified by successfully deriving an improved design of electric bicycle propulsion motor
    corecore