22,105 research outputs found

    Dispersion analysis techniques within the space vehicle dynamics simulation program

    Get PDF
    The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO)

    Doubly Charmed Baryons in COMPASS

    Full text link
    The search for doubly charmed baryons has been a topic for COMPASS from the beginning. Requiring however a complete spectrometer and highest possible trigger rates this measurement has been postponed. The scenario for such a measurement in the second phase of COMPASS is outlined here. First studies of triggering and simulation of the setup have been performed. New rate estimates based on recent measurements from SELEX at FNAL are presented.Comment: 13 pages, 15 figures, contribution to the Workshop on Future Physics at COMPASS, CERN, Geneva, September 26-27 2002, to appear as CERN Yellow Repor

    Latitudinal variation of the solar photospheric intensity

    Get PDF
    We have examined images from the Precision Solar Photometric Telescope (PSPT) at the Mauna Loa Solar Observatory (MLSO) in search of latitudinal variation in the solar photospheric intensity. Along with the expected brightening of the solar activity belts, we have found a weak enhancement of the mean continuum intensity at polar latitudes (continuum intensity enhancement ∌0.1−0.2\sim0.1 - 0.2% corresponding to a brightness temperature enhancement of ∌2.5K\sim2.5{\rm K}). This appears to be thermal in origin and not due to a polar accumulation of weak magnetic elements, with both the continuum and CaIIK intensity distributions shifted towards higher values with little change in shape from their mid-latitude distributions. Since the enhancement is of low spatial frequency and of very small amplitude it is difficult to separate from systematic instrumental and processing errors. We provide a thorough discussion of these and conclude that the measurement captures real solar latitudinal intensity variations.Comment: 24 pages, 8 figs, accepted in Ap

    Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator

    Full text link
    We realize controlled cavity-mediated photon transfer between two single nanoparticles over a distance of several tens of micrometers. First, we show how a single nanoscopic emitter attached to a near-field probe can be coupled to high-Q whispering-gallery modes of a silica microsphere at will. Then we demonstrate transfer of energy between this and a second nanoparticle deposited on the sphere surface. We estimate the photon transfer efficiency to be about six orders of magnitude higher than that via free space propagation at comparable separations.Comment: accepted for publication in Nano Letter

    Morphological stability of electromigration-driven vacancy islands

    Full text link
    The electromigration-induced shape evolution of two-dimensional vacancy islands on a crystal surface is studied using a continuum approach. We consider the regime where mass transport is restricted to terrace diffusion in the interior of the island. In the limit of fast attachment/detachment kinetics a circle translating at constant velocity is a stationary solution of the problem. In contrast to earlier work [O. Pierre-Louis and T.L. Einstein, Phys. Rev. B 62, 13697 (2000)] we show that the circular solution remains linearly stable for arbitrarily large driving forces. The numerical solution of the full nonlinear problem nevertheless reveals a fingering instability at the trailing end of the island, which develops from finite amplitude perturbations and eventually leads to pinch-off. Relaxing the condition of instantaneous attachment/detachment kinetics, we obtain non-circular elongated stationary shapes in an analytic approximation which compares favorably to the full numerical solution.Comment: 12 page

    Witnessing Entanglement of EPR States With Second-Order Interference

    Full text link
    The separability of the continuous-variable EPR state can be tested with Hanbury-Brown and Twiss type interference. The second-order visibility of such interference can provide an experimental test of entanglement. It is shown that time-resolved interference leads to the Hong, Ou and Mandel deep, that provides a signature of quantum non-separability for pure and mixed EPR states. A Hanbury-Brown and Twiss type witness operator can be constructed to test the quantum nature of the EPR entanglement.Comment: 9 pages, 5 figure

    First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved

    Get PDF
    We report the first direct detection of a strong, 5 kG magnetic field on the surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting transient radio and optical emission bursts modulated by fast rotation. We have detected the surface magnetic field as circularly polarized signatures in the 819 nm sodium lines when an active emission region faced the Earth. Modeling Stokes profiles of these lines reveals the effective temperature of 2800 K and log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on evolutionary tracks as a young brown dwarf with the mass of 55±\pm4 MJ_{\rm J} and age of 22±\pm4 Myr. Its magnetic field is at least 5.1 kG and covers at least 11% of the visible hemisphere. The active region topology recovered using line profile inversions comprises hot plasma loops with a vertical stratification of optical and radio emission sources. These loops rotate with the dwarf in and out of view causing periodic emission bursts. The magnetic field is detected at the base of the loops. This is the first time that we can quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG surface magnetic field and solve the puzzle of their driving mechanism. This is also the coolest known dwarf with such a strong surface magnetic field. The young age of LSR J1835+3259 implies that it may still maintain a disk, which may facilitate bursts via magnetospheric accretion, like in higher-mass T Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs and hot Jupiters.Comment: ApJ, in pres

    Three Lenses on Lurking: Making Sense of Digital Silence

    Get PDF
    In this chapter, the authors provide a critical exploration of the concept of lurking in online learning spaces through a phenomenological inquiry. The authors begin from a position that lurking is often misunderstood – or perhaps not understood – in education, and that the term itself is quite problematic, as it is typically applied to a disparate range of behaviors by those who perceive them as problematic. The authors then propose three heuristic lenses to make sense of lurking behaviors: lurking as troublesome, lurking as ordinary, and lurking as political. These lenses demonstrate that lurking behaviors not only stem from a range of different motivations but are also situated in a variety of contexts, that is, lurking is personal and contextual. The authors’ aim is not to define or redefine lurking for readers but to provide a critical analysis of what digital silence might mean for their students based on their contextual experience and in the light of critical literature. The authors invite readers to be part of the reflexive analysis by considering what lurking might mean in their own teaching contexts

    ONE-TO-MANY NODE MATCHING BETWEEN COMPLEX NETWORKS

    Full text link

    Microscopic theory of quantum-transport phenomena in mesoscopic systems: A Monte Carlo approach

    Get PDF
    A theoretical investigation of quantum-transport phenomena in mesoscopic systems is presented. In particular, a generalization to ``open systems'' of the well-known semiconductor Bloch equations is proposed. The presence of spatial boundary conditions manifest itself through self-energy corrections and additional source terms in the kinetic equations, whose form is suitable for a solution via a generalized Monte Carlo simulation. The proposed approach is applied to the study of quantum-transport phenomena in double-barrier structures as well as in superlattices, showing a strong interplay between phase coherence and relaxation.Comment: to appear in Phys. Rev. Let
    • 

    corecore