311 research outputs found
A Memetic Algorithm for the Multidimensional Assignment Problem
The Multidimensional Assignment Problem (MAP or s-AP in the case of s
dimensions) is an extension of the well-known assignment problem. The most
studied case of MAP is 3-AP, though the problems with larger values of s have
also a number of applications. In this paper we propose a memetic algorithm for
MAP that is a combination of a genetic algorithm with a local search procedure.
The main contribution of the paper is an idea of dynamically adjusted
generation size, that yields an outstanding flexibility of the algorithm to
perform well for both small and large fixed running times. The results of
computational experiments for several instance families show that the proposed
algorithm produces solutions of very high quality in a reasonable time and
outperforms the state-of-the art 3-AP memetic algorithm.Comment: 14 page
Many-to-Many Graph Matching: a Continuous Relaxation Approach
Graphs provide an efficient tool for object representation in various
computer vision applications. Once graph-based representations are constructed,
an important question is how to compare graphs. This problem is often
formulated as a graph matching problem where one seeks a mapping between
vertices of two graphs which optimally aligns their structure. In the classical
formulation of graph matching, only one-to-one correspondences between vertices
are considered. However, in many applications, graphs cannot be matched
perfectly and it is more interesting to consider many-to-many correspondences
where clusters of vertices in one graph are matched to clusters of vertices in
the other graph. In this paper, we formulate the many-to-many graph matching
problem as a discrete optimization problem and propose an approximate algorithm
based on a continuous relaxation of the combinatorial problem. We compare our
method with other existing methods on several benchmark computer vision
datasets.Comment: 1
Approximation Algorithms for the Max-Buying Problem with Limited Supply
We consider the Max-Buying Problem with Limited Supply, in which there are
items, with copies of each item , and bidders such that every
bidder has valuation for item . The goal is to find a pricing
and an allocation of items to bidders that maximizes the profit, where
every item is allocated to at most bidders, every bidder receives at most
one item and if a bidder receives item then . Briest
and Krysta presented a 2-approximation for this problem and Aggarwal et al.
presented a 4-approximation for the Price Ladder variant where the pricing must
be non-increasing (that is, ). We present an
-approximation for the Max-Buying Problem with Limited Supply and, for
every , a -approximation for the Price Ladder
variant
A Local Computation Approximation Scheme to Maximum Matching
We present a polylogarithmic local computation matching algorithm which
guarantees a (1-\eps)-approximation to the maximum matching in graphs of
bounded degree.Comment: Appears in Approx 201
How Many Topics? Stability Analysis for Topic Models
Topic modeling refers to the task of discovering the underlying thematic
structure in a text corpus, where the output is commonly presented as a report
of the top terms appearing in each topic. Despite the diversity of topic
modeling algorithms that have been proposed, a common challenge in successfully
applying these techniques is the selection of an appropriate number of topics
for a given corpus. Choosing too few topics will produce results that are
overly broad, while choosing too many will result in the "over-clustering" of a
corpus into many small, highly-similar topics. In this paper, we propose a
term-centric stability analysis strategy to address this issue, the idea being
that a model with an appropriate number of topics will be more robust to
perturbations in the data. Using a topic modeling approach based on matrix
factorization, evaluations performed on a range of corpora show that this
strategy can successfully guide the model selection process.Comment: Improve readability of plots. Add minor clarification
Minimum Partial-Matching and Hausdorff RMS-Distance under Translation: Combinatorics and Algorithms
We consider the RMS-distance (sum of squared distances between pairs of points) under translation between two point sets in the plane. In the Hausdorff setup, each point is paired to its nearest neighbor in the other set. We develop algorithms for finding a local minimum in near-linear time on the line, and in nearly quadratic time in the plane. These improve substantially the worst-case behavior of the popular ICP heuristics for solving this problem. In the partial-matching setup, each point in the smaller set is matched to a distinct point in the bigger set. Although the problem is not known to be polynomial, we establish several structural properties of the underlying subdivision of the plane and derive improved bounds on its complexity. In addition, we show how to compute a local minimum of the partial-matching RMS-distance under translation, in polynomial time
Explicit Computation of Input Weights in Extreme Learning Machines
We present a closed form expression for initializing the input weights in a
multi-layer perceptron, which can be used as the first step in synthesis of an
Extreme Learning Ma-chine. The expression is based on the standard function for
a separating hyperplane as computed in multilayer perceptrons and linear
Support Vector Machines; that is, as a linear combination of input data
samples. In the absence of supervised training for the input weights, random
linear combinations of training data samples are used to project the input data
to a higher dimensional hidden layer. The hidden layer weights are solved in
the standard ELM fashion by computing the pseudoinverse of the hidden layer
outputs and multiplying by the desired output values. All weights for this
method can be computed in a single pass, and the resulting networks are more
accurate and more consistent on some standard problems than regular ELM
networks of the same size.Comment: In submission for the ELM 2014 Conferenc
A Cryptographic Moving-Knife Cake-Cutting Protocol
This paper proposes a cake-cutting protocol using cryptography when the cake
is a heterogeneous good that is represented by an interval on a real line.
Although the Dubins-Spanier moving-knife protocol with one knife achieves
simple fairness, all players must execute the protocol synchronously. Thus, the
protocol cannot be executed on asynchronous networks such as the Internet. We
show that the moving-knife protocol can be executed asynchronously by a
discrete protocol using a secure auction protocol. The number of cuts is n-1
where n is the number of players, which is the minimum.Comment: In Proceedings IWIGP 2012, arXiv:1202.422
- …