103 research outputs found

    Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

    Get PDF
    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions

    Design and implementation of a noise temperature measurement system for the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX)

    Full text link
    This paper describes the design, implementation, and verification of a test-bed for determining the noise temperature of radio antennas operating between 400-800MHz. The requirements for this test-bed were driven by the HIRAX experiment, which uses antennas with embedded amplification, making system noise characterization difficult in the laboratory. The test-bed consists of two large cylindrical cavities, each containing radio-frequency (RF) absorber held at different temperatures (300K and 77K), allowing a measurement of system noise temperature through the well-known 'Y-factor' method. The apparatus has been constructed at Yale, and over the course of the past year has undergone detailed verification measurements. To date, three preliminary noise temperature measurement sets have been conducted using the system, putting us on track to make the first noise temperature measurements of the HIRAX feed and perform the first analysis of feed repeatability.Comment: 19 pages, 12 figure

    Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

    Get PDF
    Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences

    Atomic spectrometry update – a review of advances in environmental analysis

    Full text link

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Virus nomenclature below the species level : a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae

    Get PDF
    The International Committee on Taxonomy of Viruses (ICTV) organizes the classification of viruses into taxa, but is not responsible for the nomenclature for taxa members. International experts groups, such as the ICTV Study Groups, recommend the classification and naming of viruses and their strains, variants, and isolates. The ICTV Filoviridae Study Group has recently introduced an updated classification and nomenclature for filoviruses. Subsequently, and together with numerous other filovirus experts, a consistent nomenclature for their natural genetic variants and isolates was developed that aims at simplifying the retrieval of sequence data from electronic databases. This is a first important step toward a viral genome annotation standard as sought by the US National Center for Biotechnology Information (NCBI). Here, this work is extended to include filoviruses obtained in the laboratory by artificial selection through passage in laboratory hosts. The previously developed template for natural filovirus genetic variant naming ( //<year of sampling>/-) is retained, but it is proposed to adapt the type of information added to each field for laboratory animal-adapted variants. For instance, the full-length designation of an Ebola virus Mayinga variant adapted at the State Research Center for Virology and Biotechnology “Vector” to cause disease in guinea pigs after seven passages would be akin to “Ebola virus VECTOR/C.porcellus-lab/COD/1976/Mayinga- GPA-P7”. As was proposed for the names of natural filovirus variants, we suggest using the fulllength designation in databases, as well as in the method section of publications. Shortened designations (such as “EBOV VECTOR/C.por/COD/76/May-GPA-P7”) and abbreviations (such as “EBOV/May-GPA-P7”) could be used in the remainder of the text depending on how critical it is to convey information contained in the full-length name. “EBOV” would suffice if only one EBOV strain/variant/isolate is addressed.This work was funded in part by the Joint Science and Technology Office for Chem Bio Defense (proposal #TMTI0048_09_RD_T to SB).http://www.springerlink.com/content/0304-8608/hb2013ab201

    Virus nomenclature below the species level : a standardized nomenclature for filovirus strains and variants rescued from cDNA

    Get PDF
    Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratoryadapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming,\virus name[(\strain[/)\isolation host-suffix[/ \country of sampling[/\year of sampling[/\genetic variant designation[-\isolate designation[, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to ‘‘Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1’’ (with the suffix ‘‘rec’’ identifying the recombinant nature of the virus and ‘‘abc1’’ being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as ‘‘EBOV H.sap/COD/95/ Kik-abc1’’) and abbreviations (such as ‘‘EBOV/Kik-abc1’’) could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. ‘‘EBOV’’ would suffice if only one EBOV strain/variant/isolate is addressed.http://link.springer.com/journal/705hb201
    corecore