2,925 research outputs found

    Orbitally-driven Peierls state in spinels

    Full text link
    We consider the superstructures, which can be formed in spinels containing on B-sites the transition-metal ions with partially filled t2g levels. We show that, when such systems are close to itinerant state (e.g. have an insulator-metal transition), there may appear in them an orbitally-driven Peierls state. We explain by this mechanism the very unusual superstructures observed in CuIr2S4 (octamers) and MgTi2O4 (chiral superstructures) and suggest that similar phenomenon should be observed in NaTiO2 and possibly in some other systems.Comment: 4 pages, 3 figure

    Theoretical prediction of Jahn-Teller distortions and orbital ordering in Cs2CuCl2Br2

    Full text link
    With the use of the density function calculations we show that the actual crystal structure of Cs2_2CuCl2_2Br2_2 should contain elongated in the abab-plane CuCl4_4Br2_2 octahedra, in contrast to the experimentally observed compression in cc-direction. We also predict that the spins on Cu2+^{2+} ions should be ferromagnetically ordered in abab-plane, while the exchange interaction along cc-direction is small and its sign is uncertain.Comment: 4 pages, 3 figure

    Phase separation in systems with charge ordering

    Get PDF
    A simple model of charge ordering is considered. It is shown explicitly that at any deviation from half-filling (n1/2n \neq 1/2) the system is unstable with respect to phase separation into charge ordered regions with n=1/2n = 1/2 and metallic regions with smaller electron or hole density. Possible structure of this phase-separated state (metallic droplets in a charge-ordered matrix)is discussed. The model is extended to account for the strong Hund-rule onsite coupling and the weaker intersite antiferromagnetic exchange. An analysis of this extended model allows us to determine the magnetic structure of the phase-separated state and to reveal the characteristic features of manganites and other substances with charge ordering.Comment: 9 pages, revte

    Jahn-Teller distortions and phase separation in doped manganites

    Full text link
    A "minimal model" of the Kondo-lattice type is used to describe a competition between the localization and metallicity in doped manganites and related magnetic oxides with Jahn-Teller ions. It is shown that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. A strong tendency to the phase separation is demonstrated for a wide range of intermediate doping concentrations vanishing at low and high doping. The phase diagram of the model in the x-T plane is constructed. At low temperatures, the system is in a state with a long-range magnetic order: antiferromagnetic (AF), ferromagnetic (FM), or AF-FM phase separated (PS) state. At high temperatures, there can exist two types of the paramagnetic (PM) state with zero and nonzero density of the itinerant electrons. In the intermediate temperature range, the phase diagram includes different kinds of the PS states: AF-FM, FM-PM, and PM with different content of itinerant electrons. The applied magnetic field changes the phase diagram favoring the FM ordering. It is shown that the variation of temperature or magnetic field can induce the metal-insulator transition in a certain range of doping levels.Comment: 14 pages, 7 figures, submitted to Phys. Rev. B.; v.2 contains the changes introduced according to comments of the PRB Referees; in v. 3, some misprints are correcte

    Integer filling metal insulator transitions in the degenerate Hubbard model

    Full text link
    We obtain exact numerical solutions of the degenerate Hubbard model in the limit of large dimensions (or large lattice connectivity). Successive Mott-Hubbard metal insulator transitions at integer fillings occur at intermediate values of the interaction and low enough temperature in the paramagnetic phase. The results are relevant for transition metal oxides with partially filled narrow degenerate bands.Comment: 4 pages + 4 figures (in 5 ps-files), revte

    Life After Losing an Adult Child to a Drug Overdose: A Kawa Perspective

    Get PDF
    Background: Limited research is available to occupational therapy practitioners focusing on parents’ abilities to cope with the loss of an adult child to a drug overdose. We examined the unique experiences of grieving parents from a Kawa model perspective to identify potential implications for occupational therapy. Methods: We used a qualitative approach in which 11 participants completed Kawa drawings and participated in semi-structured interviews. Results: Following a Kawa model analysis themes emerged: volatile nature of flow, support from inner circle and connection with outer circle, lonely islands, personal attributes of positivity and economics, and enhancing my river’s flow. Conclusion: The loss of an adult child to a drug overdose presents health care professionals with a unique set of grieving circumstances, including changes in life roles and abilities to participate in occupations, which can be challenging to address. As a result, this study suggests the Kawa model is an effective assessment tool that should be considered for use when working with those grieving the loss of a child to a drug overdose

    Role of local geometry in spin and orbital structure of transition metal compounds

    Full text link
    We analyze the role of local geometry in the spin and orbital interaction in transition metal compounds with orbital degeneracy. We stress that the tendency observed for the most studied case (transition metals in O6_6 octahedra with one common oxygen -- common corner of neighboring octahedra and with 180\sim 180^{\circ} metal--oxygen--metal bonds), that ferro-orbital ordering renders antiferro-spin coupling, and, {\it vice versa}, antiferro-orbitals give ferro-spin ordering, is not valid in general case, in particular for octahedra with common edge and with 90\sim 90^{\circ} M--O--M bonds. Special attention is paid to the ``third case'', neighboring octahedra with common face (three common oxygens) -- the case practically not considered until now, although there are many real systems with this geometry. Interestingly enough, the spin--orbital exchange in this case turns out to be to be simpler and more symmetric than in the first two cases. We also consider, which form the effective exchange takes for different geometries in case of strong spin--orbit coupling.Comment: 31 pages, 9 figures, submitted to JET

    Elementary excitations of the symmetric spin-orbital model: The XY limit

    Full text link
    The elementary excitations of the 1D, symmetric, spin-orbital model are investigated by studying two anisotropic versions of the model, the pure XY and the dimerized XXZ case, with analytical and numerical methods. While they preserve the symmetry between spin and orbital degrees of freedom, these models allow for a simple and transparent picture of the low--lying excitations: In the pure XY case, a phase separation takes place between two phases with free--fermion like, gapless excitations, while in the dimerized case, the low-energy effective Hamiltonian reduces to the 1D Ising model with gapped excitations. In both cases, all the elementary excitations involve simultaneous flips of the spin and orbital degrees of freedom, a clear indication of the breakdown of the traditional mean-field theory.Comment: Revtex, two figure

    Orbital ordering in charge transfer insulators

    Get PDF
    We discuss a new mechanism of orbital ordering, which in charge transfer insulators is more important than the usual exchange interactions and which can make the very type of the ground state of a charge transfer insulator, i.e. its orbital and magnetic ordering, different from that of a Mott-Hubbard insulator. This purely electronic mechanism allows us to explain why orbitals in Jahn-Teller materials typically order at higher temperatures than spins, and to understand the type of orbital ordering in a number of materials, e.g. K_2CuF_4, without invoking the electron-lattice interaction.Comment: 4 pages, 2 figure

    Orbital ordering in frustrated Jahn-Teller systems

    Get PDF
    We consider the superexchange in `frustrated' Jahn-Teller systems, such as the transition metal oxides NaNiO_2, LiNiO_2, and ZnMn_2O_4, in which transition metal ions with doubly degenerate orbitals form a triangular or pyrochlore lattice and are connected by the 90-degree metal-oxygen-metal bonds. We show that this interaction is much different from a more familiar exchange in systems with the 180-degree bonds, e.g. perovskites. In contrast to the strong interplay between the orbital and spin degrees of freedom in perovskites, in the 90-degree exchange systems spins and orbitals are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all orbital states. Due to frustration, the mean-field orbital ground state is strongly degenerate. Quantum orbital fluctuations select particular ferro-orbital states, such as the one observed in NaNiO_2. We also discuss why LiNiO_2 may still behave as an orbital liquid.Comment: 5 pages, 3 figure
    corecore