514 research outputs found
Investigating the association between schizophrenia and distance visual acuity: Mendelian randomisation study
BACKGROUND: Increased rates of visual impairment are observed in people with schizophrenia. AIMS: We assessed whether genetically predicted poor distance acuity is causally associated with schizophrenia, and whether genetically predicted schizophrenia is causally associated with poorer visual acuity. METHOD: We used bidirectional, two-sample Mendelian randomisation to assess the effect of poor distance acuity on schizophrenia risk, poorer visual acuity on schizophrenia risk and schizophrenia on visual acuity, in European and East Asian ancestry samples ranging from approximately 14 000 to 500 000 participants. Genetic instrumental variables were obtained from the largest available summary statistics: for schizophrenia, from the Psychiatric Genomics Consortium; for visual acuity, from the UK Biobank; and for poor distance acuity, from a meta-analysis of case-control samples. We used the inverse variance-weighted method and sensitivity analyses to test validity of results. RESULTS: We found little evidence that poor distance acuity was causally associated with schizophrenia (odds ratio 1.00, 95% CI 0.91-1.10). Genetically predicted schizophrenia was associated with poorer visual acuity (mean difference in logMAR score: 0.024, 95% CI 0.014-0.033) in European ancestry samples, with a similar but less precise effect that in smaller East Asian ancestry samples (mean difference: 0.186, 95% CI -0.008 to 0.379). CONCLUSIONS: Genetic evidence supports schizophrenia being a causal risk factor for poorer visual acuity, but not the converse. This highlights the importance of visual care for people with psychosis and refutes previous hypotheses that visual impairment is a potential target for prevention of schizophrenia
Complex disease genetics: present and future translational applications
A report on the British Atherosclerosis Society autumn meeting 'Genetics of Complex Diseases', Cambridge, UK, 17-18 September 2009
Polygenic prediction of major depressive disorder and related traits in African ancestries UK Biobank participants
Genome-Wide Association Studies (GWAS) over-represent European ancestries, neglecting all other ancestry groups and low-income nations. Consequently, polygenic risk scores (PRS) more accurately predict complex traits in Europeans than African Ancestries groups. Very few studies have looked at the transferability of European-derived PRS for behavioural and mental health phenotypes to Africans. We assessed the comparative accuracy of depression PRS trained on European and African Ancestries GWAS studies to predict major depressive disorder (MDD) and related traits in African ancestry participants from the UK Biobank.UK Biobank participants were selected based on Principal component analysis clustering with an African genetic similarity reference population, MDD was assessed with the Composite International Diagnostic Interview (CIDI). PRS were computed using PRSice2software using either European or African Ancestries GWAS summary statistics. PRS trained on European ancestry samples (246,363 cases) predicted case control status in Africans of the UK Biobank with similar accuracies (R2 = 2%, β = 0.32, empirical p-value = 0.002) to PRS trained on far much smaller samples of African Ancestries participants from 23andMe, Inc. (5045 cases, R² = 1.8%, β = 0.28, empirical p-value = 0.008). This suggests that prediction of MDD status from Africans to Africans had greater efficiency relative to discovery sample size than prediction of MDD from Europeans to Africans. Prediction of MDD status in AfricanUK Biobank participants using GWAS findings of likely causal risk factors from European ancestries was non-significant. GWAS of MDD in European ancestries are inefficient for improving polygenic prediction in African samples; urgent MDD studies in Africa are neede
Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers
INTRODUCTION: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. METHODS: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. RESULTS: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive associations in the general population (intraclass correlation (ICC) = 0.61, 95% confidence interval (CI): 0.45 to 0.74), and the same was true when considering ER-negative associations in both groups (ICC = 0.59, 95% CI: 0.42 to 0.72). Similarly, there was strong correlation between the ER-positive associations for BRCA1 and BRCA2 carriers (ICC = 0.67, 95% CI: 0.52 to 0.78), whereas ER-positive associations in any one of the groups were generally inconsistent with ER-negative associations in any of the others. After stratifying by ER status in mutation carriers, additional significant associations were observed. Several previously unreported variants exhibited associations at P <10(-6) in the analyses by PR status, HER2 status, TN phenotype, morphologic subtypes, histological grade and nodal involvement. CONCLUSIONS: Differences in associations of common BC susceptibility alleles between BRCA1 and BRCA2 carriers and the general population are explained to a large extent by differences in the prevalence of ER-positive and ER-negative tumors. Estimates of the risks associated with these variants based on population-based studies are likely to be applicable to mutation carriers after taking ER status into account, which has implications for risk prediction.published_or_final_versio
Type 2 diabetes risks and determinants in second-generation migrants and mixed ethnicity people of South Asian and African Caribbean descent in the UK
AIMS/HYPOTHESIS: Excess risks of type 2 diabetes in UK South Asians (SA) and African Caribbeans (AC) compared with Europeans remain unexplained. We studied risks and determinants of type 2 diabetes in first- and second-generation (born in the UK) migrants, and in those of mixed ethnicity. METHODS: Data from the UK Biobank, a population-based cohort of ~500,000 participants aged 40-69 at recruitment, were used. Type 2 diabetes was assigned using self-report and HbA1c. Ethnicity was both self-reported and genetically assigned using admixture level scores. European, mixed European/South Asian (MixESA), mixed European/African Caribbean (MixEAC), SA and AC groups were analysed, matched for age and sex to enable comparison. In the frames of this cross-sectional study, we compared type 2 diabetes in second- vs first-generation migrants, and mixed ethnicity vs non-mixed groups. Risks and explanations were analysed using logistic regression and mediation analysis, respectively. RESULTS: Type 2 diabetes prevalence was markedly elevated in SA (599/3317 = 18%) and AC (534/4180 = 13%) compared with Europeans (140/3324 = 4%). Prevalence was lower in second- vs first-generation SA (124/1115 = 11% vs 155/1115 = 14%) and AC (163/2200 = 7% vs 227/2200 = 10%). Favourable adiposity (i.e. lower waist/hip ratio or BMI) contributed to lower risk in second-generation migrants. Type 2 diabetes in mixed populations (MixESA: 52/831 = 6%, MixEAC: 70/1045 = 7%) was lower than in comparator ethnic groups (SA: 18%, AC: 13%) and higher than in Europeans (4%). Greater socioeconomic deprivation accounted for 17% and 42% of the excess type 2 diabetes risk in MixESA and MixEAC compared with Europeans, respectively. Replacing self-reported with genetically assigned ethnicity corroborated the mixed ethnicity analysis. CONCLUSIONS/INTERPRETATION: Type 2 diabetes risks in second-generation SA and AC migrants are a fifth lower than in first-generation migrants. Mixed ethnicity risks were markedly lower than SA and AC groups, though remaining higher than in Europeans. Distribution of environmental risk factors, largely obesity and socioeconomic status, appears to play a key role in accounting for ethnic differences in type 2 diabetes risk
Rate of Cognitive Decline in Alzheimer's Disease Stratified by Age
Background: There is only limited information available about the effect of age on
course of cognitive decline in patients with onset of Alzheimer's Disease (AD) over
the age of 64 years.
Objective: We compared the rate of, and factors affecting, cognitive decline in
patients with AD aged <65 years (young-onset AD), 65-74 years (middle-onset AD),
and ≥75 years (late-onset AD).
Method: The study used longitudinal data from the Essex Memory Clinic which
included a total of 305 participants; 56 had YOAD, 73 had MOAD, and 176 had
LOAD. The rate of cognitive decline was measured using scores from the Mini
Mental State Examination (MMSE), and the data were examined using multilevel
models analysis.
Results: There was evidence of a difference in cognitive decline across the age
groups with the YOAD group declining 2.8 MMSE points per year, those with MOAD
declined 2.0 MMSE points per year and the LOAD group declined 1.4 MMSE points
per year.
Conclusions: Patients with LOAD have a better prognosis than YOAD and MOAD.
However, even between the MOAD and LOAD groups, age is a significant predictor
of cognitive decline, with older patients having a more benign course
Population genetic analyses implicate biogenesis of translation machinery in human ageing
Reduced provision of protein translation machinery promotes healthy aging in a number of animal models. In humans, however, inborn impairments in translation machinery are a known cause of several developmental disorders, collectively termed ribosomopathies. Here, we use casual inference approaches in genetic epidemiology to investigate whether adult, tissue-specific biogenesis of translation machinery drives human aging. We assess naturally occurring variation in the expression of genes encoding subunits specific to the two RNA polymerases (Pols) that transcribe ribosomal and transfer RNAs, namely Pol I and III, and the variation in expression of ribosomal protein (RP) genes, using Mendelian randomization. We find each causally associated with human longevity (β = -0.15 ± 0.047, P = 9.6 × 10-4, q = 0.015; β = -0.13 ± 0.040, P = 1.4 × 10-3, q = 0.023; β = -0.048 ± 0.016, P = 3.5 × 10-3, q = 0.056, respectively), and this does not appear to be mediated by altered susceptibility to a single disease. We find that reduced expression of Pol III, RPs, or Pol I promotes longevity from different organs, namely visceral adipose, liver, and skeletal muscle, echoing the tissue specificity of ribosomopathies. Our study shows the utility of leveraging genetic variation in expression to elucidate how essential cellular processes impact human aging. The findings extend the evolutionary conservation of protein synthesis as a critical process that drives animal aging to include humans
- …