2,612 research outputs found

    Distinct ultraviolet-signaling pathways in bean leaves. DNA damage is associated with ß-1,3-glucanase gene induction, but not with flavonoid formation

    Get PDF
    The enzyme beta-1,3-glucanase (betaGlu) was found to be strongly induced by ultraviolet (UV-B; 280-320 nm) radiation in primary leaves of French bean (Phaseolus vulgaris). This was demonstrated on the level of gene transcription, protein synthesis, and enzyme activity and was due to the expression of bean class I betaGlu (pGlu I). In contrast to other proteins of the family of pathogenesis-related proteins, the induction of betaGlu I by UV correlated with the formation of photoreversible DNA damage, i.e. Pyrimidine dimer formation. In conditions that allowed photorepair of this damage, betaGlu I induction was blocked. Therefore, UV-induced DNA damage seems to constitute a primary signal in the pathway leading to the induction of the betaGlu I gene(s). The induction was a local response because in partly irradiated leaves betaGlu I was selectively found in leaf parts exposed to UV. Although short wavelength UV (lambda 295 nm) as present in natural radiation was still effective. In contrast to UV induction of betaGlu I, the induction of flavonoids in bean leaves was optimally triggered by much more moderate fluences from the UV wavelength range no longer effective in betaGlu I induction. UV induction of the flavonoid pathway shows no correlation with DNA damage and thus should be mediated via a different signal transduction pathway

    Evaluating the performance of low-energy feed forward osmosis system for desalination using impaired and saline water sources

    Get PDF
    Forward Osmosis (FO) is a natural process of treating water or wastewater due to the difference in osmotic pressures. FO is a membrane separation technology, applicable to food processing, industrial wastewater treatment and seawater or brackish water desalination. The phenomena of FO processes occur whereby water molecules are driven across a semi-permeable membrane by an osmotic pressure gradient that is generated from a higher concentrate draw solution. FO processes can recover potable water resources from wastewater streams through the flow of pure water from a lower concen-trated feed solution towards higher concentrated draw solutions leaving behind pollutants, impurities, and salts in the semi-permeable membrane. This paper assesses the design, build and testing of a laboratory scaled Feed Forward Osmosis (FFO) system for treating river water collected from the River Medway, Kent, England. The FO process was a highly effective form of river water treatment and able to treat the River Water with high rejection rates of solutes (>90%). Experimental results showed that the FFO system can achieve a better performance when the molarity of the draw solution is higher. The average solute rejection rate of the FO membrane for both inorganic and organic compounds was 94.83 %. Moreover, the operation of the forward osmosis membrane illustrated that it has a lower fouling propensity and higher solute rejection ca-pabilities. The pilot scaled FFO system has the ability for greater salt rejection and lower electronic conductivity levels which resulted from the successful desalination of river water. A sodium chloride (NaCl) or saltwater draw solution performed posi-tively in inducing higher osmotic pressures with a substantial effect of lower energy requirements for the system. Lower en-ergy consumptions of the FFO system allow similar water treatment possibilities with energy savings potential. The FFO system showed to be an environmentally viable and economically feasible river water treatment technology

    From Deposit to Point Cloud – a Study of Low-Cost Computer Vision Approaches for the Straightforward Documentation of Archaeological Excavations

    Get PDF
    Stratigraphic archaeological excavations demand high-resolution documentation techniques for 3D recording. Today, this is typically accomplished using total stations or terrestrial laser scanners. This paper demonstrates the potential of another technique that is low-cost and easy to execute. It takes advantage of software using Structure from Motion (SfM) algorithms, which are known for their ability to reconstruct camera pose and threedimensional scene geometry (rendered as a sparse point cloud) from a series of overlapping photographs captured by a camera moving around the scene. When complemented by stereo matching algorithms, detailed 3D surface models can be built from such relatively oriented photo collections in a fully automated way. The absolute orientation of the model can be derived by the manual measurement of control points. The approach is extremely flexible and appropriate to deal with a wide variety of imagery, because this computer vision approach can also work with imagery resulting from a randomly moving camera (i.e. uncontrolled conditions) and calibrated optics are not a prerequisite. For a few years, these algorithms are embedded in several free and low-cost software packages. This paper will outline how such a program can be applied to map archaeological excavations in a very fast and uncomplicated way, using imagery shot with a standard compact digital camera (even if the ima ges were not taken for this purpose). Archived data from previous excavations of VIAS-University of Vienna has been chosen and the derived digital surface models and orthophotos have been examined for their usefulness for archaeological applications. The a bsolute georeferencing of the resulting surface models was performed with the manual identification of fourteen control points. In order to express the positional accuracy of the generated 3D surface models, the NSSDA guidelines were applied.  Simultaneously acquired terrestrial laser scanning data – which had been processed in our standard workflow – was used to independently check the results. The vertical accuracy of the surface models generated by SfM was found to be within 0.04 m at the 95 % confidence interval, whereas several visual assessments proved a very high horizontal positional accuracy as well

    Deviations from plastic barriers in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} thin films

    Full text link
    Resistive transitions of an epitaxial Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} thin film were measured in various magnetic fields (HcH\parallel c), ranging from 0 to 22.0 T. Rounded curvatures of low resistivity tails are observed in Arrhenius plot and considered to relate to deviations from plastic barriers. In order to characterize these deviations, an empirical barrier form is developed, which is found to be in good agreement with experimental data and coincide with the plastic barrier form in a limited magnetic field range. Using the plastic barrier predictions and the empirical barrier form, we successfully explain the observed deviations.Comment: 5 pages, 6 figures; PRB 71, 052502 (2005

    Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study

    Get PDF
    Exogenous administration of 5-aminolaevulinic acid (ALA) is becoming widely used to enhance the endogenous synthesis of protoporphyrin IX (PpIX) in photodynamic therapy (PDT) and fluorescence photodetection (PD). Recently, results have shown that the chemical modification of ALA into its more lipophilic esters circumvents limitations of ALA-induced PpIX like shallow penetration depth into deep tissue layers and inhomogeneous biodistribution and enhances the total PpIX formation. The present clinical pilot study assesses the feasibility and the advantages of a topical ALA ester-based fluorescence photodetection in the human bladder. In this preliminary study 5-aminolaevulinic acid hexylester (h-ALA) solutions, containing concentrations ranging from 4 to 16 mM, were applied intravesically to 25 patients. Effects of time and drug dose on the resulting PpIX fluorescence level were determined in vivo with an optical fibre-based spectrofluorometer. Neither local nor systemic side-effects were observed for the applied conditions. All conditions used yielded a preferential PpIX accumulation in the neoplastic tissue. Our clinical investigations indicate that with h-ALA a twofold increase of PpIX fluorescence intensity can be observed using 20-fold lower concentrations as compared to ALA

    Evaluating Knowledge Anchors in Data Graphs against Basic Level Objects

    Get PDF
    The growing number of available data graphs in the form of RDF Linked Da-ta enables the development of semantic exploration applications in many domains. Often, the users are not domain experts and are therefore unaware of the complex knowledge structures represented in the data graphs they in-teract with. This hinders users’ experience and effectiveness. Our research concerns intelligent support to facilitate the exploration of data graphs by us-ers who are not domain experts. We propose a new navigation support ap-proach underpinned by the subsumption theory of meaningful learning, which postulates that new concepts are grasped by starting from familiar concepts which serve as knowledge anchors from where links to new knowledge are made. Our earlier work has developed several metrics and the corresponding algorithms for identifying knowledge anchors in data graphs. In this paper, we assess the performance of these algorithms by considering the user perspective and application context. The paper address the challenge of aligning basic level objects that represent familiar concepts in human cog-nitive structures with automatically derived knowledge anchors in data graphs. We present a systematic approach that adapts experimental methods from Cognitive Science to derive basic level objects underpinned by a data graph. This is used to evaluate knowledge anchors in data graphs in two ap-plication domains - semantic browsing (Music) and semantic search (Ca-reers). The evaluation validates the algorithms, which enables their adoption over different domains and application contexts

    Bulk Versus Edge in the Quantum Hall Effect

    Full text link
    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, \sxy should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.Comment: 4 pages, RevTex, 1 postscript figur

    Application of (V)UV/O3 technology for post-treatment of biologically treated wastewater: A pilot-scale study

    Get PDF
    For the first time, high energy VUV photons and generation of O3 by (V)UV lamps were applied together for removal of active pharmaceutical ingredients (APIs) from biologically treated wastewater (BTWW) in pilot-scale. The core of the pilot container unit was a photoreactor assembly consisting of six photoreactors, each containing a low-pressure Hg lamp (UV dose of 1.2 J/cm2 and 6.6 J/cm2 at 185 nm and 254 nm, respectively). BTWW was irradiated (4.75 min residence time) by (V)UV light in presence of in situ photochemically generated O3 from coolant air of the lamps. Experiments were conducted at the site of two wastewater treatment plants. Out of seven target APIs (namely carbamazepine, ciprofloxacin, clarithromycin, diclofenac, metoprolol, sitagliptin, and sulfamethoxazole), 80–100% removal was accomplished for five and 40–80% for two compounds. Two degradation products of carbamazepine were detected. Degradation products of other target compounds were not found. The applied O3 dose was 30–45 μg O3/mg dissolved organic carbon. Inactivation of up to log-4.8, log-4.5 and log-3.8 could be achieved for total coliform, Escherichia coli and Enterococcus faecalis, respectively. SOS Chromotest indicated no genotoxicity nor acute toxicity. Generation of neither NH4+, NO2− nor NO3− was observed during post-treatment. Electric energy per order values were calculated for the first time for (V)UV/O3 treatment in BTWW with a median value of 1.5 kWh/m3. This technology can be proposed for post-treatment of BTWWs of small settlements or livestock farms to degrade micropollutants before water discharge or for production of irrigation water. Further studies are essential in pilot-scale for other applications
    corecore