38 research outputs found

    Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

    Get PDF
    We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non- or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet (EUV) radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photo-ionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ~0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20% that of Jupiter.Comment: 8 pages, 6 figures, 2 tables, accepted to MNRA

    Entry of Plasma Sheet Particles into the Inner Magnetosphere Observed by POLAR/CAMMICE

    Get PDF
    Statistical results are presented from Polar/CAMMICE measurements of events during which the plasma sheet ions have penetrated deeply into the inner magnetosphere. Owing to their characteristic structure in energy-time spectrograms, these events are called intense nose events. Almost 400 observations of such structures were made during 1997. Intense nose events are shown to be more frequent in the dusk than in the dawn sector. They typically penetrate well inside L = 4, the deepest penetration having occurred around midnight and noon. The intense nose events are associated with magnetic (substorm) activity. However, even moderate activity (AE = 150-250 nT) resulted in formation of these structures. In a case study of November 3, 1997, three sequential inner magnetosphere crossings of the Polar and Interball Auroral spacecraft are shown, each of which exhibited signatures of intense nose-like structures. Using the innermost boundary determinations from these observations, it is demonstrated that a large-scale convective electric field alone cannot account for the inward motion of the structure. It is suggested that the intense nose structures are caused by short-lived intense electric fields (in excess of ∼1 mV/m) in the inner tail at L=4-5

    Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune

    Get PDF
    We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 d. We model the activity-induced radial velocity variations of the host star with a multidimensional Gaussian Process framework and detect a planetary signal of 10.6 \ub1 3.0 m s−1, which matches the transit ephemeris, and translates to a planet mass of 21.8 \ub1 6.2 M. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04+−006661 g cm−3, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011–1012 g s−1 due to the high level of radiation it receives from its host star

    The Multiplanet System TOI-421*: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary*

    Get PDF
    We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of Pb = 5.19672 ± 0.00049 days, a mass of Mb = 7.17 ± 0.66 M⊕, and a radius of Rb = 2.680.18+0.19{2.68}_{-0.18}^{+0.19} R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of Mc = 16.421.04+1.06{16.42}_{-1.04}^{+1.06} M⊕, a radius of Rc = 5.090.15+0.16{5.09}_{-0.15}^{+0.16} R⊕, and a density of ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3. With its characteristics, the outer planet (ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed

    Characterising TOI-732 b and c: New insights into the M-dwarf radius and density valley

    Full text link
    TOI-732 is an M dwarf hosting two transiting planets that are located on the two opposite sides of the radius valley. By doubling the number of available space-based observations and increasing the number of radial velocity (RV) measurements, we aim at refining the parameters of TOI-732 b and c. We also use the results to study the slope of the radius valley and the density valley for a well-characterised sample of M-dwarf exoplanets. We performed a global MCMC analysis by jointly modelling ground-based light curves and CHEOPS and TESS observations, along with RV time series both taken from the literature and obtained with the MAROON-X spectrograph. The slopes of the M-dwarf valleys were quantified via a Support Vector Machine (SVM) procedure. TOI-732 b is an ultrashort-period planet (P0.77P\sim0.77 d) with a radius Rb=1.3250.058+0.057R_b=1.325_{-0.058}^{+0.057} RR_{\oplus} and a mass Mb=2.46±0.19M_b=2.46\pm0.19 MM_{\oplus} (mean density ρb=5.80.8+1.0\rho_b=5.8_{-0.8}^{+1.0} g cm3^{-3}), while the outer planet at P12.25P\sim12.25 d has Rc=2.390.11+0.10R_c=2.39_{-0.11}^{+0.10} RR_{\oplus}, Mc=8.040.48+0.50M_c=8.04_{-0.48}^{+0.50} MM_{\oplus}, and thus ρc=3.240.43+0.55\rho_c=3.24_{-0.43}^{+0.55} g cm3^{-3}. Also taking into account our interior structure calculations, TOI-732 b is a super-Earth and TOI-732 c is a mini-Neptune. Following the SVM approach, we quantified dlogRp,valley/dlogP=0.0650.013+0.024\mathrm{d}\log{R_{p,{\mathrm{valley}}}}/\mathrm{d}\log{P}=-0.065_{-0.013}^{+0.024}, which is flatter than for Sun-like stars. In line with former analyses, we note that the radius valley for M-dwarf planets is more densely populated, and we further quantify the slope of the density valley as dlogρ^valley/dlogP=0.020.04+0.12\mathrm{d}\log{\hat{\rho}_{\mathrm{valley}}}/\mathrm{d}\log{P}=-0.02_{-0.04}^{+0.12}. Compared to FGK stars, the weaker dependence of the position of the radius valley on the orbital period might indicate that the formation shapes the radius valley around M dwarfs more strongly than the evolution mechanisms.Comment: 28 pages (17 in the main text), 18 figures (9 in the main text), 11 tables (7 in the main text). Accepted for publication in A&
    corecore