16 research outputs found

    Flux Qubits with Long Coherence Times for Hybrid Quantum Circuits

    Get PDF
    We present measurements of superconducting flux qubits embedded in a three dimensional copper cavity. The qubits are fabricated on a sapphire substrate and are measured by coupling them inductively to an on-chip superconducting resonator located in the middle of the cavity. At their flux-insensitive point, all measured qubits reach an intrinsic energy relaxation time in the 6-20 microseconds range and a pure dephasing time comprised between 3 and 10 microseconds. This significant improvement over previous works opens the way to the coherent coupling of a flux-qubit to individual spins

    Macroscopic quantum tunneling and phase diffusion in a La2x_{2-x}Srx_xCuO4_4 intrinsic Josephson junction stack

    Full text link
    We performed measurements of switching current distribution in a submicron La2x_{2-x}Srx_xCuO4_4 (LSCO) intrinsic Josephson junction (IJJ) stack in a wide temperature range. The escape rate saturates below approximately 2\,K, indicating that the escape event is dominated by a macroscopic quantum tunneling (MQT) process with a crossover temperature T2T^{*}\approx2\,K. We applied the theory of MQT for IJJ stacks, taking into account dissipation and the phase re-trapping effect in the LSCO IJJ stack. The theory is in good agreement with the experiment both in the MQT and in the thermal activation regimes.Comment: 9 pages, 7 figure

    Fabrication of submicron La2x_{2-x}Srx_{x}CuO4_{4} intrinsic Josephson junction stacks

    Full text link
    Intrinsic Josephson junction (IJJ) stacks of cuprate superconductors have potential to be implemented as intrinsic phase qubits working at relatively high temperatures. We report success in fabricating submicron La2x_{2-x}Srx_{x}CuO4_{4} (LSCO) IJJ stacks carved out of single crystals. We also show a new fabrication method in which argon ion etching is performed after focused ion beam etching. As a result, we obtained an LSCO IJJ stack in which resistive multi-branches appeared. It may be possible to control the number of stacked IJJs with an accuracy of a single IJJ by developing this method.Comment: 5 pages, 6 figure

    Quantum technologies with hybrid systems

    Get PDF
    International audienceAn extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near-and long-term perspectives of this fascinating and rapidly expanding field. hybrid quantum systems | quantum technologies | quantum information During the last several decades, quantum physics has evolved from being primarily the conceptual framework for the description of microscopic phenomena to providing inspiration for new technological applications. A range of ideas for quantum information processing (1) and secure communication (2, 3), quantum enhanced sensing (4–8), and the simulation of complex dynamics (9–14) has given rise to expectations that society may before long benefit from such quantum technologies. These developments are driven by our rapidly evolving abilities to experimentally manipulate and control quantum dynamics in diverse systems, ranging from single photons (2, 13), atoms and ions (11, 12), and individual electron and nuclear spins (15–17), to mesoscopic super-conducting (14, 18) and nanomechanical devices (19, 20). As a rule, each of these systems can execute one or a few specific tasks, but no single system can be universally suitable for all envisioned applications. Thus, photons are best suited for transmitting quantum information, weakly interacting spins may serve as long-lived quantum memories , and the dynamics of electronic states of atoms or electric charges in semiconductors and superconducting elements may realize rapid processing of information encoded in their quantum states. The implementation of devices that can simultaneously perform several or all of these tasks, e.g., reliably store, process, and transmit quantum states, calls for a new paradigm: that of hybrid quantum systems (HQSs) (15, 21–24). HQSs attain their multitasking capabilities by combining different physical components with complementary functionalities. Many of the early ideas for HQSs emerged from the field of quantum information processing and communication (QIPC) and were, to a large extent, inspired by the development of QIPC architectures in which superconducting qubits are coupled to high-quality microwave resonators (18, 25). Super-conducting qubits are very-well-controlled quantum systems (26, 27), but in contrast to atoms, they suffer from comparatively short coherence times and do not couple coherently to optical photons. A microwave resonator, such as, for example, a lumped-element LC-circuit or coplanar waveguide (CPW) res-onator, can serve as an interface between superconducting qubits and also between superconducting qubits and other quantum systems with longer coherence times and optical transitions (18, 22, 23, 28). It has thus been proposed to couple superconducting qubits, via a " microwave quantum bus, " to ions (29), atoms (30–32), polar molecules (33), electrons confined above a liquid helium surface (34), and spin-doped crystals (15, 35–37). With the recent advances in the control of micro-and nanomechanical systems (19, 20), the use of a mechanical quantum bus ha

    Loop-gap Microwave Resonator for Hybrid Quantum Systems

    Get PDF
    We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems, and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogen-vacancy (NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer.Comment: 5 pages, 4 figure

    Loop-gap microwave resonator for hybrid quantum systems

    No full text
    We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogenvacancy(NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer
    corecore