67 research outputs found

    Speciation of Lanthanide Metal Ion Dopants in Microcrystalline All-Inorganic Halide Perovskite CsPbCl3

    Get PDF
    Lanthanides are versatile modulators of optoelectronic properties owing to their narrow optical emission spectra across the visible and near-infrared range. Their use in metal halide perovskites (MHPs) has recently gained prominence, although their fate in these materials has not yet been established at the atomic level. We use cesium-133 solid-state NMR to establish the speciation of all nonradioactive lanthanide ions (La3+, Ce3+, Pr3+, Nd3+, Sm3+, Sm2+, Eu3+, Eu2+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) in microcrystalline CsPbCl3. Our results show that all lanthanides incorporate into the perovskite structure of CsPbCl3 regardless of their oxidation state (+2, +3).</p

    Atomistic origins of the limited phase stability of Cs+-rich FAxCs(1-x)PbI3 mixtures

    Get PDF
    Mixed cation perovskites, [HC(NH2)2]xCs(1−x)PbI3, (FAxCs(1−x)PbI3) with x = 0.8 achieve high solar cell power conversion efficiencies (PCEs) while exhibiting long-term stability under ambient conditions. In this work, we perform density functional theory (DFT) calculations, first-principles molecular dynamics (MD) simulations, solid-state nuclear magnetic resonance (NMR) and X-ray powder diffraction (XRD) measurements aimed at investigating the possible phase stability of Cs+-rich FAxCs(1−x)PbI3, mixed-cation materials as potential candidate for tandem solar cell applications

    Local Structure and Dynamics in Methylammonium, Formamidinium, and Cesium Tin(II) Mixed-Halide Perovskites from 119Sn Solid-State NMR.

    Get PDF
    Organic-inorganic tin(II) halide perovskites have emerged as promising alternatives to lead halide perovskites in optoelectronic applications. While they suffer from considerably poorer performance and stability in comparison to their lead analogues, their performance improvements have so far largely been driven by trial and error efforts due to a critical lack of methods to probe their atomic-level microstructure. Here, we identify the challenges and devise a 119Sn solid-state NMR protocol for the determination of the local structure of mixed-cation and mixed-halide tin(II) halide perovskites as well as their degradation products and related phases. We establish that the longitudinal relaxation of 119Sn can span 6 orders of magnitude in this class of compounds, which makes judicious choice of experimental NMR parameters essential for the reliable detection of various phases. We show that Cl/Br and I/Br mixed-halide perovskites form solid alloys in any ratio, while only limited mixing is possible for I/Cl compositions. We elucidate the degradation pathways of Cs-, MA-, and FA-based tin(II) halides and show that degradation leads to highly disordered, qualitatively similar products, regardless of the A-site cation and halide. We detect the presence of metallic tin among the degradation products, which we suggest could contribute to the previously reported high conductivities in tin(II) halide perovskites. 119Sn NMR chemical shifts are a sensitive probe of the halide coordination environment as well as of the A-site cation composition. Finally, we use variable-temperature multifield relaxation measurements to quantify ion dynamics in MASnBr3 and establish activation energies for motion and show that this motion leads to spontaneous halide homogenization at room temperature whenever two different pure-halide perovskites are put in physical contact

    Simultaneous lattice engineering and defect control via cadmium incorporation for high‐performance inorganic perovskite solar cells

    Get PDF
    Doping of all‐inorganic lead halide perovskites to enhance their photovoltaic performance and stability has been reported to be effective. Up to now most studies have focused on the doping of elements in to the perovskite lattice. However, most of them cannot be doped into the perovskite lattice and the roles of these dopants are still controversial. Herein,the authors introduce CdI2 as an additive into CsPbI3−xBr x and use it as active layer to fabricate high‐performance inorganic perovskite solar cells (PSCs). Cd with a smaller radius than Pb can partially substitute Pb in the perovskite lattice by up to 2 mol%. Meanwhile, the remaining Cd stays on the surface and grain boundaries (GB) of the perovskite film in the form of Cs2CdI4−xBr−x, which is found to reduce non‐radiative recombination. These effects result in prolonged charge carrier lifetime, suppressed defect formation, decreased GBs, and an upward shift of energybands in the Cd‐containing film. A champion efficiency of 20.8% is achieved for Cd‐incorporated PSCs, together with improved device ambient stability. This work highlights the importance of simultaneous lattice engineering, defectcontrol and atomic‐level characterization in achieving high‐performance inorganic PSCs with well‐defined structure‐property relationships

    Cation Dynamics in Mixed-Cation (MA)(x)(FA)(1-x)PbI3 Hybrid Perovskites from Solid-State NMR

    Get PDF
    Mixed-cation organic lead halide perovskites attract unfaltering attention owing to their excellent photovoltaic properties. Currently, the best performing perovskite materials contain multiple cations and provide power conversion efficiencies up to around 22%. Here, we report the first quantitative, cation-specific data on cation reorientation dynamics in hybrid mixed-cation formamidinium (FA)/methylammonium (MA) lead halide perovskites. We use N-14, H-2, C-13, and H-1 solid-state MAS NMR to elucidate cation reorientation dynamics, microscopic phase composition, and the MA/FA ratio, in (MA)(x)(FA)(1-x)PbI3 between 100 and 330 K. The reorientation rates correlate in a striking manner with the carrier lifetimes previously reported for these materials and provide evidence of the polaronic nature of charge carriers in PV perovskites

    Halide Mixing and Phase Segregation in Cs2AgBiX6 (X=Cl, Br, I) Double Perovskites from Cesium-133 Solid-State NMR and Optical Spectroscopy

    Get PDF
    All-inorganic double perovskites (elpasolites) are a promising potential alternative to lead halide perovskite in optoelectronic applications. While halide mixing is a well-established strategy for band gap tuning, little is known about halide mixing and phase segregation phenomena in double perovskites. Here, we synthesize a wide range of single− and mixed−halide Cs2AgBiX6 (X=Cl, Br, I) double perovskites using mechanosynthesis and probe their atomic-level microstructure using 133Cs solid-state MAS NMR. We show that mixed Cl/Br materials form pure phases for any Cl/Br ratio while Cl/I and Br/I mixing is only possible with-in a narrow range of halide ratios (<3 mol% I) and leads to a complex mixture of products for higher ratios. We characterize the optical properties of the resulting materials and show that halide mixing does not lead to an appreciable tunability of the PL emission. We find that iodide incorporation is particularly pernicious in that it quenches the PL emission intensity and radiative charge carrier lifetimes for iodide ratios as low as 0.3 mol%. Our study shows that sol-id-state NMR, in conjunction with optical spectroscopies, provides a comprehensive understanding of the structure-activity relationships, halide mixing and phase segregation phenomena in Cs2AgBiX6 (X=Cl, Br, I) double perovskites

    Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from Cs-133 and H-1 NMR relaxation enhancement

    Get PDF
    Lead halide perovskites belong to a broad class of compounds with appealing optoelectronic and photovoltaic properties. Doping with transition metal ions such as Mn2+ and Co2+ has recently been reported to substantially enhance luminescence and stability of these materials. However, so far atomic-level evidence for incorporation of the dopants into perovskite phases has been missing. Here, we introduce a general and straightforward method for confirming the substitutional doping of bulk perovskite phases with paramagnetic dopants. Using Cs-133 and H-1 solid-state MAS NMR relaxation measurements we provide for the first time direct evidence that, consistent with current understanding, Mn2+ is incorporated into the perovskite lattice of CsPbCl3 and CsPbBr3 and does not form clusters. We also show that, contrary to current conviction, Co2+ is not incorporated into the perovskite lattice of MAPbI(3)
    • 

    corecore