57 research outputs found

    Non-Oberbeck-Boussinesq zonal flow generation

    Get PDF
    Novel mechanisms for zonal flow (ZF) generation for both large relative density fluctuations and background density gradients are presented. In this non-Oberbeck-Boussinesq (NOB) regime ZFs are driven by the Favre stress, the large fluctuation extension of the Reynolds stress, and by background density gradient and radial particle flux dominated terms. Simulations of a nonlinear full-F gyro-fluid model confirm the predicted mechanism for radial ZF propagation and show the significance of the NOB ZF terms for either large relative density fluctuation levels or steep background density gradients

    Unified transport scaling laws for plasma blobs and depletions

    Full text link
    We study the dynamics of seeded plasma blobs and depletions in an (effective) gravitational field. For incompressible flows the radial center of mass velocity of blobs and depletions is proportional to the square root of their initial cross-field size and amplitude. If the flows are compressible, this scaling holds only for ratios of amplitude to size larger than a critical value. Otherwise, the maximum blob and depletion velocity depends linearly on the initial amplitude and is independent of size. In both cases the acceleration of blobs and depletions depends on their initial amplitude relative to the background plasma density, is proportional to gravity and independent of their cross-field size. Due to their reduced inertia plasma depletions accelerate more quickly than the corresponding blobs. These scaling laws are derived from the invariants of the governing drift-fluid equations and agree excellently with numerical simulations over five orders of magnitude. We suggest an empirical model that unifies and correctly captures the radial acceleration and maximum velocities of both blobs and depletions

    Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    Get PDF
    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15{\mu}s. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute approximately 6% of the total fluctuation driven heat flux

    Scrape-off layer turbulence in TCV: Evidence in support of stochastic modelling.

    Get PDF
    Manuscript. Published version available in Plasma Physics and Controlled Fusion, vol. 58, no. 4Intermittent fluctuations in the TCV scrape-off layer have been investigated by analysing long Langmuir probe data time series under stationary conditions, allowing calculation of fluctuation statistics with high accuracy. The ion saturation current signal is dominated by the frequent occurrence of large-amplitude bursts attributed to filament structures moving through the scrape-off layer. The average burst shape is well described by a double-exponential wave-form with constant duration, while the waiting times and peak amplitudes of the bursts both have an exponential distribution. Associated with bursts in the ion saturation current is a dipole-shaped floating potential structure and radially outwards directed electric drift velocity and particle flux, with average peak values increasing with the saturation current burst amplitude. The floating potential fluctuations have a normal probability density function while the distributions for the ion saturation current and estimated radial velocity have exponential tails for large fluctuations. These findings are discussed in the light of prevailing theories for filament motion and a stochastic model for intermittent scrape-off layer plasma fluctuations

    Fluctuation statistics in the scrape-off layer of Alcator C-Mod

    Get PDF
    We study long time series of the ion saturation current and floating potential, sampled by Langmuir probes dwelled in the outboard mid-plane scrape off layer and embedded in the lower divertor baffle of Alcator C-Mod. A series of ohmically heated L-mode plasma discharges is investigated with line-averaged plasma density ranging from n_e/n_G = 0.15 to 0.42, where n_G is the Greenwald density. All ion saturation current time series that are sampled in the far scrape-off layer are characterized by large-amplitude burst events. Coefficients of skewness and excess kurtosis of the time series obey a quadratic relationship and their histograms coincide partially upon proper normalization. Histograms of the ion saturation current time series are found to agree well with a prediction of a stochastic model for the particle density fluctuations in scrape-off layer plasmas. The distribution of the waiting times between successive large-amplitude burst events and of the burst amplitudes are approximately described by exponential distributions. The average waiting time and burst amplitude are found to vary weakly with the line-averaged plasma density. Conditional averaging reveals that the radial blob velocity, estimated from floating potential measurements, increases with the normalized burst amplitude in the outboard mid-plane scrape-off layer. For low density discharges, the conditionally averaged waveform of the floating potential associated with large amplitude bursts at the divertor probes has a dipolar shape. In detached divertor conditions the average waveform is random, indicating electrical disconnection of blobs from the sheaths at the divertor targets.Comment: 45 pages, 20 figure

    Relationship between frequency power spectra and intermittent, large-amplitude bursts in the Alcator C-Mod scrape-off layer

    Get PDF
    This is the peer reviewed version of the following article: Theodorsen, A., Garcia, O.E., Kube, R., LaBombard, B. & Terry, J.L. (2017). Relationship between frequency power spectra and intermittent, large-amplitude bursts in the Alcator C-Mod scrape-off layer. Nuclear Fusion, 57(114004). https://doi.org/10.1088/1741-4326/aa7e4c, which has been published in final form at https://doi.org/10.1088/1741-4326/aa7e4c.Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and skewed towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Predictions of a stochastic model, describing the plasma fluctuations as a super-position of uncorrelated pulses, are shown to be in excellent agreement with the measurements. This implies that the pulse duration is the same, while the degree of pulse overlap decreases radially outwards in the scrape-off layer. The universal frequency power spectral density is thus determined by the shape and duration of the large-amplitude bursts associated with blob-like structures. The model also describes the rate of threshold level crossings, for which the exponential tails underline the intermittency of the fluctuations in the far scarpe-off layer

    Statistical properties of fluctuation driven flows in the outboard mid-plane SOL of Alcator C-Mod

    Get PDF
    The scale length of the radial density profile in scrape-off layer plasmas has been shown to depend on the line-averaged plasma density. While first reported on AlcatorC-Mod, recent work verifies this phenomena in JET and ASDEX Upgrade. In low density plasmas with a sheath-limited SOL, the density profiles present a two-scale structure which allows the separation of the SOL into two distinct regions. While the near SOL presents a small profile length scale, the far-SOL presents a flat density profile length scale. Transitioning into detached divertor conditions by increasing the line-averaged plasma density, the density profile features a shallow length scale. In this contribution, AlcatorC-Mods Mirror Langmuir Probe system is used to investigate the radial profiles as well as the statistical properties of flucutations in the electron density, temperature, as well as the fluctuation driven fluxes

    Measurement of inner wall limiter SOL widths in KSTAR tokamak

    Get PDF
    https://doi.org/10.1016/j.nme.2016.12.001.Scrape-off layer (SOL) widths λq are presented from the KSTAR tokamak using fast reciprocating Langmuir probe assembly (FRLPA) measurements at the outboard mid-plane (OMP) and the infra-Red (IR) thermography at inboard limiter tiles in moderately elongated (κ = 1.45 – 1.55) L-mode inner wall-limited (IWL) plasmas under experimental conditions such as BT = 2.0 T, PNBI = 1.4 – 1.5 MW, line averaged densities 2.5 – 5.1 × 1019 m−3) and plasma current Ip = 0.4 − 0.7 MA. There is clear evidence for a double exponential structure in q||(r) from the FRLPA such that, for example at Ip = 0.6 MA, a narrow feature, λq,near (=3.5 mm) is found close to the LFCS, followed by a broader width, λq,main (=57.0 mm). Double exponential profiles (λq,near = 1.5 – 2.8 mm, λq,main = 17.0 – 35.0 mm) can be also observed in the IR heat flux mapped to the OMP throughout the range of Ip investigated. In addition, analysis of SOL turbulence statistics obtained with the FRLPA shows high relative fluctuation levels and positively skewed distributions in electron temperature and ion particle flux across the SOL, with both properties increasing for longer distance from the LCFS, as often previously observed in the tokamaks. Interestingly, the fluctuation character expressed in terms of spectral distributions remains unchanged in passing from the narrow to the broad SOL heat flux channel
    • …
    corecore