2,146 research outputs found

    A Case of Reactive Cervical Lymphadenopathy with Fat Necrosis Impinging on Adjacent Vascular Structures.

    Get PDF
    A tender neck mass in adults can be a diagnostic challenge due to a wide differential diagnosis, which ranges from reactive lymphadenopathy to malignancy. In this report, we describe a case of a young female with an unusually large and tender reactive lymph node with fat necrosis. The diagnostic imaging findings alone mimicked that of scrofula and malignancy, which prompted a complete workup. Additionally, the enlarged lymph node was compressing the internal jugular vein in the setting of oral contraceptive use by the patient, raising concern for Lemierre's syndrome or internal jugular vein thrombosis. This report shows how, in the appropriate clinical context, and especially with the involvement of adjacent respiratory or neurovascular structures, aggressive diagnostic testing can be indicated

    Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments

    Full text link
    We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.Comment: 10 two-column pages, 8 figures, to appear in Phys. Rev.

    Mapping Monte Carlo to Langevin dynamics: A Fokker-Planck approach

    Full text link
    We propose a general method of using the Fokker-Planck equation (FPE) to link the Monte-Carlo (MC) and the Langevin micromagnetic schemes. We derive the drift and disusion FPE terms corresponding to the MC method and show that it is analytically equivalent to the stochastic Landau-Lifshitz-Gilbert (LLG) equation of Langevin-based micromagnetics. Subsequent results such as the time quantification factor for the Metropolis MC method can be rigorously derived from this mapping equivalence. The validity of the mapping is shown by the close numerical convergence between the MC method and the LLG equation for the case of a single magnetic particle as well as interacting arrays of particles. We also found that our Metropolis MC is accurate for a large range of damping factors α\alpha, unlike previous time-quantified MC methods which break down at low α\alpha, where precessional motion dominates.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure

    Submillimeter emission from the hot molecular jet HH 211

    Full text link
    We observed the HH 211 jet in the submillimeter continuum and the CO(3-2) and SiO(8-7) transitions with the Submillimeter Array. The continuum source detected at the center of the outflow shows an elongated morphology, perpendicular to the direction of the outflow axis. The high-velocity emission of both molecules shows a knotty and highly collimated structure. The SiO(8-7) emission at the base of the outflow, close to the driving source, spans a wide range of velocities, from -20 up to 40 km s^{-1}. This suggests that a wide-angle wind may be the driving mechanism of the HH 211 outflow. For distances greater than 5" (1500 AU) from the driving source, emission from both transitions follows a Hubble-law behavior, with SiO(8-7) reaching higher velocities than CO(3-2), and being located upstream of the CO(3-2) knots. This indicates that the SiO(8-7) emission is likely tracing entrained gas very close to the primary jet, while the CO(3-2) is tracing less dense entrained gas. From the SiO(5-4) data of Hirano et al. we find that the SiO(8-7)/SiO(5-4) brightness temperature ratio along the jet decreases for knots far from the driving source. This is consistent with the density decreasing along the jet, from (3-10)x10^6 cm^{-3} at 500 AU to (0.8-4)x10^6 cm^{-3} at 5000 AU from the driving source.Comment: 3 pages, 3 figures. Accepted by Astrophysical Journal Letter

    Noise robust distillation of self-supervised speech models via correlation metrics

    Full text link
    Compared to large speech foundation models, small distilled models exhibit degraded noise robustness. The student's robustness can be improved by introducing noise at the inputs during pre-training. Despite this, using the standard distillation loss still yields a student with degraded performance. Thus, this paper proposes improving student robustness via distillation with correlation metrics. Teacher behavior is learned by maximizing the teacher and student cross-correlation matrix between their representations towards identity. Noise robustness is encouraged via the student's self-correlation minimization. The proposed method is agnostic of the teacher model and consistently outperforms the previous approach. This work also proposes an heuristic to weigh the importance of the two correlation terms automatically. Experiments show consistently better clean and noise generalization on Intent Classification, Keyword Spotting, and Automatic Speech Recognition tasks on SUPERB Challenge.Comment: 6 page

    Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy

    Get PDF
    We report on the growth of and evolution of defects in GaN epilayers having single- and double-layer SiNx nanoporous insertion layers. The SiNx was formed in situ in the growth chamber of an organometallic vapor-phase epitaxy system by simultaneous flow of diluted silane and ammonia. The GaN epilayers and SiNx interlayers were grown on 6H-SiC substrates using three different nucleation layers, namely, low-temperature GaN, high-temperature GaN, and high-temperature AlN nucleation layers. X-ray-diffraction rocking curves and cross-sectional and plan-view transmission electron microscope analyses indicated that a nanoporous SiNx layer can reduce the dislocations density in the GaN overgrown layer to ∼3×108cm−2 range; below this level the defect blocking effect of SiNx would saturate. Therefore the insertion of a second SiNx layer becomes much less effective in reducing dislocations, although it continues to reduce the point defects, as suggested by time-resolved photoluminescence measurements. The insertion of SiNx interlayers was found to improve significantly the mechanical strength of the GaN epilayers resulting in a much lower crack line density

    Aspects of Scalar Field Dynamics in Gauss-Bonnet Brane Worlds

    Full text link
    The Einstein-Gauss-Bonnet equations projected from the bulk to brane lead to a complicated Friedmann equation which simplifies to H2ρqH^2 \sim \rho^q in the asymptotic regimes. The Randall-Sundrum (RS) scenario corresponds to q=2q=2 whereas q=2/3q=2/3 & q=1q=1 give rise to high energy Gauss-Bonnet (GB) regime and the standard GR respectively. Amazingly, while evolving from RS regime to high energy GB limit, one passes through a GR like region which has important implications for brane world inflation. For tachyon GB inflation with potentials V(ϕ)ϕpV(\phi) \sim \phi^p investigated in this paper, the scalar to tensor ratio of perturbations RR is maximum around the RS region and is generally suppressed in the high energy regime for the positive values of pp. The ratio is very low for p>0p>0 at all energy scales relative to GB inflation with ordinary scalar field. The models based upon tachyon inflation with polynomial type of potentials with generic positive values of pp turn out to be in the 1σ1 \sigma observational contour bound at all energy scales varying from GR to high energy GB limit. The spectral index nSn_S improves for the lower values of pp and approaches its scale invariant limit for p=2p=-2 in the high energy GB regime. The ratio RR also remains small for large negative values of pp, however, difference arises for models close to scale invariance limit. In this case, the tensor to scale ratio is large in the GB regime whereas it is suppressed in the intermediate region between RS and GB. Within the frame work of patch cosmologies governed by H2ρqH^2 \sim \rho^q, the behavior of ordinary scalar field near cosmological singularity and the nature of scaling solutions are distinguished for the values of q1q 1.Comment: 15 pages, 10 eps figures; appendix on various scales in GB brane world included and references updated; final version to appear in PR

    Self-tuning experience weighted attraction learning in games

    Get PDF
    Self-tuning experience weighted attraction (EWA) is a one-parameter theory of learning in games. It addresses a criticism that an earlier model (EWA) has too many parameters, by fixing some parameters at plausible values and replacing others with functions of experience so that they no longer need to be estimated. Consequently, it is econometrically simpler than the popular weighted fictitious play and reinforcement learning models. The functions of experience which replace free parameters “self-tune” over time, adjusting in a way that selects a sensible learning rule to capture subjects’ choice dynamics. For instance, the self-tuning EWA model can turn from a weighted fictitious play into an averaging reinforcement learning as subjects equilibrate and learn to ignore inferior foregone payoffs. The theory was tested on seven different games, and compared to the earlier parametric EWA model and a one-parameter stochastic equilibrium theory (QRE). Self-tuning EWA does as well as EWA in predicting behavior in new games, even though it has fewer parameters, and fits reliably better than the QRE equilibrium benchmark
    corecore