11 research outputs found

    Spin vector and shape of (6070) Rheinland and their implications

    Full text link
    Main belt asteroids (6070) Rheinland and (54827) 2001NQ8 belong to a small population of couples of bodies which reside on very similar heliocentric orbits. Vokrouhlicky & Nesvorny (2008, AJ 136, 280) promoted a term "asteroid pairs", pointing out their common origin within the past tens to hundreds of ky. Previous attempts to reconstruct the initial configuration of Rheinland and 2001NQ8 at the time of their separation have led to the prediction that Rheinland's rotation should be retrograde. Here we report extensive photometric observations of this asteroid and use the lightcurve inversion technique to directly determine its rotation state and shape. We confirm the retrograde sense of rotation of Rheinland, with obliquity value constrained to be >= 140 deg. The ecliptic longitude of the pole position is not well constrained as yet. The asymmetric behavior of Rheinland's lightcurve reflects a sharp, near-planar edge in our convex shape representation of this asteroid. Our calibrated observations in the red filter also allow us to determine HR=13.68±0.05H_R = 13.68\pm 0.05 and G=0.31±0.05G = 0.31\pm 0.05 values of the H-G system. With the characteristic color index VR=0.49±0.05V-R = 0.49\pm 0.05 for the S-type asteroids, we thus obtain H=14.17±0.07H = 14.17\pm 0.07 for the absolute magnitude of (6070) Rheinland. This a significantly larger value than previously obtained from analysis of the astrometric survey observations. We next use the obliquity constraint for Rheinland to eliminate some degree of uncertainty in the past propagation of its orbit. This is because the sign of the past secular change of its semimajor axis due to the Yarkovsky effect is now constrained. Determination of the rotation state of the secondary component, asteroid (54827) 2001NQ8, is the key element in further constraining the age of the pair and its formation process.Comment: Published in AJ, 28 pages, 4 figures, 2 table

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∼1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    Orbital, spin state and thermophysical characterization of near-Earth asteroid (3200) Phaethon

    Full text link
    The near-Earth asteroid (3200) Phaethon is an intriguing object: its perihelion is only at 0.14 au and is associated with the Geminid meteor stream. We aim to use all available disk-integrated optical data to derive reliable convex shape model of Phaethon. By interpreting the available space- and ground-based thermal infrared data and Spitzer spectra using a thermophysical model, we also aim to further constrain its size, thermal inertia, and visible geometric albedo. We apply the convex inversion method to the new optical data obtained by six instruments together with the already existing observations. The convex shape model is then used as an input for the thermophysical modeling. We also study the long-term stability of Phaethon’s orbit and spin axis by a numerical orbital and rotation-state integrator We present a new convex shape model and rotational state of Phaethon – sidereal rotation period of 3.603958(2) h and ecliptic coordinates of the preferred pole orientation of (319◦ , −39◦) with a 5◦ uncertainty. Moreover, we derive its size (D=5.1±0.2 km), thermal inertia (Γ=600±200 J m-2s -1/2K -1), geometric visible albedo (pV=0.122±0.008), and estimate the macroscopic surface roughness. We also find that the Sun illumination at the perihelion passage during past thousands of years is not connected to a specific area on the surface implying non-preferential heating

    Implications for the Formation of (155140) 2005 UD from a New Convex Shape Model

    No full text
    (155140) 2005 UD has a similar orbit to (3200) Phaethon, an active asteroid in a highly eccentric orbit thought to be the source of the Geminid meteor shower. Evidence points to a genetic relationship between these two objects, but we have yet to fully understand how 2005 UD and Phaethon could have separated into this associated pair. Presented herein are new observations of 2005 UD from five observatories that were carried out during the 2018, 2019, and 2021 apparitions. We implemented light curve inversion using our new data, as well as dense and sparse archival data from epochs in 2005-2021, to better constrain the rotational period and derive a convex shape model of 2005 UD. We discuss two equally well-fitting pole solutions (lambda = 116.degrees 6, beta = -53.degrees 6) and (lambda = 300.degrees 3, beta = -55.degrees 4), the former largely in agreement with previous thermophysical analyses and the latter interesting due to its proximity to Phaethon's pole orientation. We also present a refined sidereal period of P (sid) = 5.234246 +/- 0.000097 hr. A search for surface color heterogeneity showed no significant rotational variation. An activity search using the deepest stacked image available of 2005 UD near aphelion did not reveal a coma or tail but allowed modeling of an upper limit of 0.04-0.37 kg s(-1) for dust production. We then leveraged our spin solutions to help limit the range of formation scenarios and the link to Phaethon in the context of nongravitational forces and timescales associated with the physical evolution of the system.Peer reviewe

    The changing rotation period of 3200 Phaethon

    No full text
    International audience3200 Phaethon is one of the largest potentially hazardous asteroids. It is also the first asteroid to be discovered in spacecraft images, the parent body of the Geminid meteor stream, and the target of JAXA's upcoming DESTINY+ mission. We have developed a physical model of Phaethon's shape and rotation state, using radar data from Arecibo and Goldstone in 2007 and 2017, stellar occultations from 2019 through 2021, and lightcurves from many apparitions (from 1989 through 2021). Phaethon has a volume-equivalent diameter of about 5.3 kilometers. It is approximately spheroidal with an equatorial ridge, resembling the shapes of 101955 Bennu and 162173 Ryugu. The earliest available lightcurve of Phaethon is from 1989 October 9 (published in Wisniewski et al. 1997). Hanuš et al. (2016) noticed that their shape model's rotation phase differed from that 1989 observation by about 20 minutes. They noted that this may be from Phaethon's rotation period changing due to activity, but they could not say whether this was real or just a timing error in that one lightcurve, since the next lightcurves are from 1994. A model with a constant rotation period provided a good fit to all of the data from 1994 through 2020. However, this model could not adequately fit the lightcurves that were acquired from four different observatories in 2021. There was a difference of about 15 minutes between the predicted and observed rotation phases — clearly greater than what the observations' uncertainties could permit. We initially considered that Phaethon's rotation period may have changed before the 2021 observations, perhaps due to activity when it was near perihelion in December 2020. However, we found that a constant rotational acceleration provides a good fit to all of the data from 1989 through 2021, clearly accounting for the discrepancies seen in 1989 and 2021 while also slightly improving the model's agreement with the data during other apparitions. We find that Phaethon's sidereal rotation period in December 2017 was 3.603944 hours. Its spin rate is increasing at a rate of 2.1×10-6 deg/day2, which corresponds to its rotation period decreasing by about 4 milliseconds per year

    The changing rotation period of 3200 Phaethon

    No full text
    International audience3200 Phaethon is one of the largest potentially hazardous asteroids. It is also the first asteroid to be discovered in spacecraft images, the parent body of the Geminid meteor stream, and the target of JAXA's upcoming DESTINY+ mission. We have developed a physical model of Phaethon's shape and rotation state, using radar data from Arecibo and Goldstone in 2007 and 2017, stellar occultations from 2019 through 2021, and lightcurves from many apparitions (from 1989 through 2021). Phaethon has a volume-equivalent diameter of about 5.3 kilometers. It is approximately spheroidal with an equatorial ridge, resembling the shapes of 101955 Bennu and 162173 Ryugu. The earliest available lightcurve of Phaethon is from 1989 October 9 (published in Wisniewski et al. 1997). Hanuš et al. (2016) noticed that their shape model's rotation phase differed from that 1989 observation by about 20 minutes. They noted that this may be from Phaethon's rotation period changing due to activity, but they could not say whether this was real or just a timing error in that one lightcurve, since the next lightcurves are from 1994. A model with a constant rotation period provided a good fit to all of the data from 1994 through 2020. However, this model could not adequately fit the lightcurves that were acquired from four different observatories in 2021. There was a difference of about 15 minutes between the predicted and observed rotation phases — clearly greater than what the observations' uncertainties could permit. We initially considered that Phaethon's rotation period may have changed before the 2021 observations, perhaps due to activity when it was near perihelion in December 2020. However, we found that a constant rotational acceleration provides a good fit to all of the data from 1989 through 2021, clearly accounting for the discrepancies seen in 1989 and 2021 while also slightly improving the model's agreement with the data during other apparitions. We find that Phaethon's sidereal rotation period in December 2017 was 3.603944 hours. Its spin rate is increasing at a rate of 2.1×10-6 deg/day2, which corresponds to its rotation period decreasing by about 4 milliseconds per year

    Radar and photometric observations and shape modeling of contact binary near-Earth Asteroid (8567) 1996 HW1

    No full text
    We observed near-Earth Asteroid (8567) 1996 HW1 at the Arecibo Observatory on six dates in September 2008, obtaining radar images and spectra. By combining these data with an extensive set of new lightcurves taken during 2008-2009 and with previously published lightcurves from 2005, we were able to reconstruct the object's shape and spin state. 1996 HW1 is an elongated, bifurcated object with maximum diameters of 3.8 × 1.6 × 1.5 km and a contact-binary shape. It is the most bifurcated near-Earth asteroid yet studied and one of the most elongated as well. The sidereal rotation period is 8.76243 ± 0.00004 h and the pole direction is within 5° of ecliptic longitude and latitude (281°, -31°). Radar astrometry has reduced the orbital element uncertainties by 27% relative to the a priori orbit solution that was based on a half-century of optical data. Simple dynamical arguments are used to demonstrate that this asteroid could have originated as a binary system that tidally decayed and merged

    Orbital period change of Dimorphos due to the DART kinetic impact

    Get PDF
    The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (β) was possible2, 3. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos4–6. Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be −33.0 ± 1.0 (3σ) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried
    corecore