43 research outputs found

    Quantitative scattering of melanin solutions

    Get PDF
    The optical scattering coefficient of a dilute, well solubilised eumelanin solution has been accurately measured as a function of incident wavelength, and found to contribute less than 6% of the total optical attenuation between 210 and 325nm. At longer wavelengths (325nm to 800nm) the scattering was less than the minimum sensitivity of our instrument. This indicates that UV and visible optical density spectra can be interpreted as true absorption with a high degree of confidence. The scattering coefficient vs wavelength was found to be consistent with Rayleigh Theory for a particle radius of 38+-1nm.Comment: 23 pages, 5 figure

    Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1

    Get PDF
    Burkholderia glumae is a Gram-negative phytopathogenic bacterium known as the causative agent of rice panicle blight. Strain B. glumae PG1 is used for the production of a biotechnologically relevant lipase, which is secreted into the culture supernatant via a type II secretion pathway. We have comparatively analyzed the genome sequences of B. glumae PG1 wild type and a lipase overproducing strain obtained by classical strain mutagenesis. Among a total number of 72 single nucleotide polymorphisms (SNPs) identified in the genome of the production strain, two were localized in front of the lipAB operon and were analyzed in detail. Both mutations contribute to a 100-fold overproduction of extracellular lipase in B. glumae PG1 by affecting transcription of the lipAB operon and efficiency of lipase secretion. We analyzed each of the two SNPs separately and observed a stronger influence of the promoter mutation than of the signal peptide modification but also a cumulative effect of both mutations. Furthermore, fusion of the mutated LipA signal peptide resulted in a 2-fold increase in secretion of the heterologous reporter alkaline phosphatase from Escherichia coli

    The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes tral and ngrl Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234

    Get PDF
    Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades

    Genome-Wide RNA Sequencing Analysis of Quorum Sensing-Controlled Regulons in the Plant-Associated Burkholderia glumae PG1 Strain

    No full text
    Burkholderia glumae PG1 is a soil-associated motile plant-pathogenic bacterium possessing a cell density-dependent regulation system called quorum sensing (QS). Its genome contains three genes, here designated bgaI1 to bgaI3, encoding distinct autoinducer-1 (AI-1) synthases, which are capable of synthesizing QS signaling molecules. Here, we report on the construction of B. glumae PG1 ΔbgaI1, ΔbgaI2, and ΔbgaI3 mutants, their phenotypic characterization, and genome-wide transcriptome analysis using RNA sequencing (RNA-seq) technology. Knockout of each of these bgaI genes resulted in strongly decreased motility, reduced extracellular lipase activity, a reduced ability to cause plant tissue maceration, and decreased pathogenicity. RNA-seq analysis of all three B. glumae PG1 AI-1 synthase mutants performed in the transition from exponential to stationary growth phase revealed differential expression of a significant number of predicted genes. In comparison with the levels of gene expression by wild-type strain B. glumae PG1, 481 genes were differentially expressed in the ΔbgaI1 mutant, 213 were differentially expressed in the ΔbgaI2 mutant, and 367 were differentially expressed in the ΔbgaI3 mutant. Interestingly, only a minor set of 78 genes was coregulated in all three mutants. The majority of the QS-regulated genes were linked to metabolic activities, and the most pronounced regulation was observed for genes involved in rhamnolipid and Flp pilus biosynthesis and the type VI secretion system and genes linked to a clustered regularly interspaced short palindromic repeat (CRISPR)-cas gene cluster

    Evidence of autoinducer-dependent and autoinducer-independent heterogeneous gene expression in <em>Sinorhizobium fredii </em>NGR234.

    No full text
    Populations of genetically identical Sinorhizobium fredii NGR234 cells differ significantly in their expression profiles of autoinducer (AI)-dependent and AI-independent genes. Promoter fusions of the NGR234 AI synthase genes traI and ngrI showed high levels of phenotypic heterogeneity during growth in TY medium on a single cell level. However, adding very high concentrations of N-(3-oxooctanoyl-)-L-homoserine lactone resulted in a more homogeneous expression profile. Similarly, the lack of internally synthesized AIs in the background of the NGR234-&Delta;traI or the NGR234-&Delta;ngrI mutant resulted in a highly homogenous expression of the corresponding promoter fusions in the population. Expression studies with reporter fusions of the promoter regions of the quorum quenching genes dlhR, qsdR1 and the pNGR234b encoded type IV pilus gene cluster suggested that other factors than AI molecules may affect NGR234 phenotypic heterogeneity. Further studies with root exudates and developing Arabidopsis thaliana seedlings provide first evidence that plant root exudates have strong impact on the heterogeneity of AI synthase and quorum quenching genes in NGR234. Thereby, plant-released octopine appears to play a key role in modulation of heterogeneous gene expression
    corecore