32 research outputs found

    Long-term EXOTIME photometry and follow-up spectroscopy of the sdB pulsator HS 0702+6043

    Full text link
    Pulsating subdwarf B (sdB) stars oscillate in short-period p-modes or long-period g-modes. HS0702+6043 (DW Lyn) is one of a few objects to show characteristics of both types and is hence classified as hybrid pulsator. It is one of our targets in the EXOTIME program to search for planetary companions around extreme horizontal branch objects. In addition to the standard exercise in asteroseismology to probe the instantaneous inner structure of a star, measured changes in the pulsation frequencies as derived from an O-C diagram can be compared to theoretical evolutionary timescales. Based on the photometric data available so far, we are able to derive a high-resolution frequency spectrum and to report on our efforts to construct a multi-season O-C diagram. Additionally, we have gathered time-resolved spectroscopic data in order to constrain stellar parameters and to derive mode parameters as well as radial and rotational velocities.Comment: 2 pages, JENAM 2008 proceedings, to be published in 'Communications in Asteroseismology', 15

    Time-resolved spectroscopy of the planet-hosting sdB pulsator V391 Pegasi

    Full text link
    The subdwarf B (sdB) star V391 Peg oscillates in short-period p modes and long-period g modes, making it one of the three known hybrids among sdBs. As a by-product of the effort to measure secular period changes in the p modes due to evolutionary effects on a time scale of almost a decade, the O-C diagram has revealed an additional sinusoidal component attributed to a periodic shift in the light travel time caused by a planetary-mass companion around the sdB star in a 3.2 yr orbit. In order to derive the mass of the companion object, it is necessary to determine the orbital inclination. One promising possibility to do this is to use the stellar inclination as a primer for the orbital orientation. The stellar inclination can refer to the rotational or the pulsational axis, which are assumed to be aligned, and can in turn then be derived by combining measurements of v_(rot) and v_(rot)sin i. The former is in principle accessible through rotational splitting in the photometric frequency spectrum (which has however not been found for V391 Peg yet), while the projected rotational velocity can be measured from the rotational broadening of spectral lines. The latter must be deconvolved from the additional pulsational broadening caused by the surface radial velocity variation in high S/N phase averaged spectra. This work gives limits on pulsational radial velocities from a series of phase resolved spectra. Phase averaged and phase resolved high resolution echelle spectra were obtained in May and September 2007 with the 9m-class Hobby-Eberly Telescope (HET), and one phase averaged spectrum in May 2008 with the 10m-Keck 1 telescope.Comment: 3 pages, JENAM 2008 proceedings, to be published in 'Communications in Asteroseismology', 15
    corecore