65 research outputs found
Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications
Electrospun polyamide 6 (PA 6) and polyamide 6/6 (PA 6/6) nanofibers were produced in order to investigate their experimental characteristics with the goal of obtaining filtration relevant fiber media. The experimental design model of each PA nanofibers contained the following variables: polymer concentration, ratio of solvents, nanofiber media collection time, tip-to-collector distance, and the deposition voltage. The average diameter of the fibers, their morphology, basis weight, thickness, and resulting media solidity were investigated. Effects of each variable on the essential characteristics of PA 6/6 and PA 6 nanofiber media were studied. The comparative analysis of the obtained PA 6/6 and PA 6 nanofiber characteristics revealed that PA 6/6 had higher potential to be used in filtration applications. Based on the experimental results, the graphical representationâresponse surfacesâfor obtaining nanofiber media with the desirable fiber diameter and basis weight characteristics were derived. Based on the modelling results the nanofiber filter media (mats) were fabricated. Filtration results revealed that nanofiber filter media electrospun from PA6/6 8% (w/vol) solutions with the smallest fiber diameters (62â66ânm) had the highest filtration efficiency (PA6/6_30 = 84.9â90.9%) and the highest quality factor (PA6/6_10 = 0.0486â0.0749âPaâ1)
The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution
Using our photometric observations taken between 1996 and 2013 and other
published data, we derived properties of the binary near-Earth asteroid
(175706) 1996 FG3 including new measurements constraining evolution of the
mutual orbit with potential consequences for the entire binary asteroid
population. We also refined previously determined values of parameters of both
components, making 1996 FG3 one of the most well understood binary asteroid
systems. We determined the orbital vector with a substantially greater accuracy
than before and we also placed constraints on a stability of the orbit.
Specifically, the ecliptic longitude and latitude of the orbital pole are
266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty
area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted
uncertainties correspond to 3sigma). We looked for a quadratic drift of the
mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2,
i.e., consistent with zero. The drift is substantially lower than predicted by
the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J.,
Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory
of an equilibrium between BYORP and tidal torques for synchronous binary
asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D.
[2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we
derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5
uncertain by a factor of five. We also derived a product of the rigidity and
quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic
response of the asteroid material to the tidal forces. This very low value
indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls
for a re-thinking of the tidal energy dissipation in close asteroid binary
systems.Comment: Many changes based on referees comment
YORP and Yarkovsky effects in asteroids (1685) Toro, (2100) Ra-Shalom, (3103) Eger, and (161989) Cacus
The rotation states of small asteroids are affected by a net torque arising
from an anisotropic sunlight reflection and thermal radiation from the
asteroids' surfaces. On long timescales, this so-called YORP effect can change
asteroid spin directions and their rotation periods. We analyzed lightcurves of
four selected near-Earth asteroids with the aim of detecting secular changes in
their rotation rates that are caused by YORP. We use the lightcurve inversion
method to model the observed lightcurves and include the change in the rotation
rate as a free parameter of optimization. We
collected more than 70 new lightcurves. For asteroids Toro and Cacus, we used
thermal infrared data from the WISE spacecraft and estimated their size and
thermal inertia. We also used the currently available optical and radar
astrometry of Toro, Ra-Shalom, and Cacus to infer the Yarkovsky effect. We
detected a YORP acceleration of for asteroid Cacus. For
Toro, we have a tentative () detection of YORP from a significant
improvement of the lightcurve fit for a nonzero value of . For asteroid
Eger, we confirmed the previously published YORP detection with more data and
updated the YORP value to . We also updated the shape model of
asteroid Ra-Shalom and put an upper limit for the change of the rotation rate
to . Ra-Shalom has a greater than
Yarkovsky detection with a theoretical value consistent with observations
assuming its size and/or density is slightly larger than the nominally expected
values
Analysis of the rotation period of asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger - search for the YORP effect
The spin state of small asteroids can change on a long timescale by the
Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises
from anisotropically scattered sunlight and proper thermal radiation from an
irregularly-shaped asteroid. The secular change in the rotation period caused
by the YORP effect can be detected by analysis of asteroid photometric
lightcurves. We analyzed photometric lightcurves of near-Earth asteroids (1865)
Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible
deviations from the constant rotation caused by the YORP effect. We carried out
new photometric observations of the three asteroids, combined the new
lightcurves with archived data, and used the lightcurve inversion method to
model the asteroid shape, pole direction, and rotation rate. The YORP effect
was modeled as a linear change in the rotation rate in time d\omega /dt. Values
of d\omega/ dt derived from observations were compared with the values
predicted by theory. We derived physical models for all three asteroids. We had
to model Eger as a nonconvex body because the convex model failed to fit the
lightcurves observed at high phase angles. We probably detected the
acceleration of the rotation rate of Eger d\omega / dt = (1.4 +/- 0.6) x
10^{-8} rad/d (3\sigma error), which corresponds to a decrease in the rotation
period by 4.2 ms/yr. The photometry of Cerberus and Ra-Shalom was consistent
with a constant-period model, and no secular change in the spin rate was
detected. We could only constrain maximum values of |d\omega / dt| < 8 x
10^{-9} rad/d for Cerberus, and |d\omega / dt| < 3 x 10^{-8} rad/d for
Ra-Shalom
The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis
Astrometric observations performed by the Gaia Follow-Up Network for Solar
System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects
first detected by ESA's Gaia mission remain recoverable after their discovery.
An observation campaign on the potentially hazardous asteroid (99 942) Apophis
was conducted during the asteroid's latest period of visibility, from
12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall
performance of the Gaia-FUN-SSO . The 2732 high quality astrometric
observations acquired during the Gaia-FUN-SSO campaign were reduced with the
Platform for Reduction of Astronomical Images Automatically (PRAIA), using the
USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric
reduction process and the precision of the newly obtained measurements are
discussed. We compare the residuals of astrometric observations that we
obtained using this reduction process to data sets that were individually
reduced by observers and accepted by the Minor Planet Center. We obtained 2103
previously unpublished astrometric positions and provide these to the
scientific community. Using these data we show that our reduction of this
astrometric campaign with a reliable stellar catalog substantially improves the
quality of the astrometric results. We present evidence that the new data will
help to reduce the orbit uncertainty of Apophis during its close approach in
2029. We show that uncertainties due to geolocations of observing stations, as
well as rounding of astrometric data can introduce an unnecessary degradation
in the quality of the resulting astrometric positions. Finally, we discuss the
impact of our campaign reduction on the recovery process of newly discovered
asteroids.Comment: Accepted for publication in A&
Spin vector and shape of (6070) Rheinland and their implications
Main belt asteroids (6070) Rheinland and (54827) 2001NQ8 belong to a small
population of couples of bodies which reside on very similar heliocentric
orbits. Vokrouhlicky & Nesvorny (2008, AJ 136, 280) promoted a term "asteroid
pairs", pointing out their common origin within the past tens to hundreds of
ky. Previous attempts to reconstruct the initial configuration of Rheinland and
2001NQ8 at the time of their separation have led to the prediction that
Rheinland's rotation should be retrograde. Here we report extensive photometric
observations of this asteroid and use the lightcurve inversion technique to
directly determine its rotation state and shape. We confirm the retrograde
sense of rotation of Rheinland, with obliquity value constrained to be >= 140
deg. The ecliptic longitude of the pole position is not well constrained as
yet. The asymmetric behavior of Rheinland's lightcurve reflects a sharp,
near-planar edge in our convex shape representation of this asteroid. Our
calibrated observations in the red filter also allow us to determine and values of the H-G system. With the
characteristic color index for the S-type asteroids, we
thus obtain for the absolute magnitude of (6070) Rheinland.
This a significantly larger value than previously obtained from analysis of the
astrometric survey observations. We next use the obliquity constraint for
Rheinland to eliminate some degree of uncertainty in the past propagation of
its orbit. This is because the sign of the past secular change of its semimajor
axis due to the Yarkovsky effect is now constrained. Determination of the
rotation state of the secondary component, asteroid (54827) 2001NQ8, is the key
element in further constraining the age of the pair and its formation process.Comment: Published in AJ, 28 pages, 4 figures, 2 table
A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS measured from stellar occultations
This work aims at constraining the size, shape, and geometric albedo of the
dwarf planet candidate 2002 MS4 through the analysis of nine stellar
occultation events. Using multichord detection, we also studied the object's
topography by analyzing the obtained limb and the residuals between observed
chords and the best-fitted ellipse. We predicted and organized the
observational campaigns of nine stellar occultations by 2002 MS4 between 2019
and 2022, resulting in two single-chord events, four double-chord detections,
and three events with three to up to sixty-one positive chords. Using 13
selected chords from the 8 August 2020 event, we determined the global
elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the
object's rotational information from the literature, constrains the object's
size, shape, and albedo. Additionally, we developed a new method to
characterize topography features on the object's limb. The global limb has a
semi-major axis of 412 10 km, a semi-minor axis of 385 17 km, and
the position angle of the minor axis is 121 16. From
this instantaneous limb, we obtained 2002 MS4's geometric albedo and the
projected area-equivalent diameter. Significant deviations from the fitted
ellipse in the northernmost limb are detected from multiple sites highlighting
three distinct topographic features: one 11 km depth depression followed by a
25 km height elevation next to a crater-like depression with an
extension of 322 39 km and 45.1 1.5 km deep. Our results present an
object that is 138 km smaller in diameter than derived from thermal
data, possibly indicating the presence of a so-far unknown satellite. However,
within the error bars, the geometric albedo in the V-band agrees with the
results published in the literature, even with the radiometric-derived albedo
A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu
We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t â t0 = 16.1 d, which covers rest-frame 3000â6250 Ă
. Based on Feâii λ5169 and Siâii λ6355, our spectrum indicates an unusually low expansion velocity of ~4000â6350 kmâs-1, the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A/SN 2013fu, we used our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we took advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & MĂ©szĂĄros (2001, ApJ, 552, L35), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P = 12 ms and a magnetic field of B = 1.1 Ă 1015 G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs
- âŠ