128 research outputs found

    The process of irreversible nucleation in multilayer growth. II. Exact results in one and two dimensions

    Full text link
    We study irreversible dimer nucleation on top of terraces during epitaxial growth in one and two dimensions, for all values of the step-edge barrier. The problem is solved exactly by transforming it into a first passage problem for a random walker in a higher-dimensional space. The spatial distribution of nucleation events is shown to differ markedly from the mean-field estimate except in the limit of very weak step-edge barriers. The nucleation rate is computed exactly, including numerical prefactors.Comment: 22 pages, 10 figures. To appear in Phys. Rev.

    The process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach

    Full text link
    The formation of stable dimers on top of terraces during epitaxial growth is investigated in detail. In this paper we focus on mean-field theory, the standard approach to study nucleation. Such theory is shown to be unsuitable for the present problem, because it is equivalent to considering adatoms as independent diffusing particles. This leads to an overestimate of the correct nucleation rate by a factor N, which has a direct physical meaning: in average, a visited lattice site is visited N times by a diffusing adatom. The dependence of N on the size of the terrace and on the strength of step-edge barriers is derived from well known results for random walks. The spatial distribution of nucleation events is shown to be different from the mean-field prediction, for the same physical reason. In the following paper we develop an exact treatment of the problem.Comment: 19 pages, 3 figures. To appear in Phys. Rev.

    Coarsening of Surface Structures in Unstable Epitaxial Growth

    Full text link
    We study unstable epitaxy on singular surfaces using continuum equations with a prescribed slope-dependent surface current. We derive scaling relations for the late stage of growth, where power law coarsening of the mound morphology is observed. For the lateral size of mounds we obtain ξ∼t1/z\xi \sim t^{1/z} with z≥4z \geq 4. An analytic treatment within a self-consistent mean-field approximation predicts multiscaling of the height-height correlation function, while the direct numerical solution of the continuum equation shows conventional scaling with z=4, independent of the shape of the surface current.Comment: 15 pages, Latex. Submitted to PR

    Influence of adatom interactions on second layer nucleation

    Full text link
    We develop a theory for the inclusion of adatom interactions in second layer nucleation occurring in epitaxial growth. The interactions considered are due to ring barriers between pairs of adatoms and binding energies of unstable clusters. The theory is based on a master equation, which describes the time development of microscopic states that are specified by cluster configurations on top of an island. The transition rates are derived by scaling arguments and tested against kinetic Monte-Carlo simulations. As an application we reanalyze experiments to determine the step edge barrier for Ag/Pt(111).Comment: 4 pages, 4 figure

    Fast coarsening in unstable epitaxy with desorption

    Full text link
    Homoepitaxial growth is unstable towards the formation of pyramidal mounds when interlayer transport is reduced due to activation barriers to hopping at step edges. Simulations of a lattice model and a continuum equation show that a small amount of desorption dramatically speeds up the coarsening of the mound array, leading to coarsening exponents between 1/3 and 1/2. The underlying mechanism is the faster growth of larger mounds due to their lower evaporation rate.Comment: 4 pages, 4 PostScript figure

    Irreversible nucleation in molecular beam epitaxy: From theory to experiments

    Full text link
    Recently, the nucleation rate on top of a terrace during the irreversible growth of a crystal surface by MBE has been determined exactly. In this paper we go beyond the standard model usually employed to study the nucleation process, and we analyze the qualitative and quantitative consequences of two important additional physical ingredients: the nonuniformity of the Ehrlich-Schwoebel barrier at the step-edge, because of the existence of kinks, and the steering effects, due to the interaction between the atoms of the flux and the substrate. We apply our results to typical experiments of second layer nucleation.Comment: 11 pages. Table I corrected and one appendix added. To be published in Phys. Rev. B (scheduled issue: 15 February 2003

    Surface Kinetics and Generation of Different Terms in a Conservative Growth Equation

    Full text link
    A method based on the kinetics of adatoms on a growing surface under epitaxial growth at low temperature in (1+1) dimensions is proposed to obtain a closed form of local growth equation. It can be generalized to any growth problem as long as diffusion of adatoms govern the surface morphology. The method can be easily extended to higher dimensions. The kinetic processes contributing to various terms in the growth equation (GE) are identified from the analysis of in-plane and downward hops. In particular, processes corresponding to the (h -> -h) symmetry breaking term and curvature dependent term are discussed. Consequence of these terms on the stable and unstable transition in (1+1) dimensions is analyzed. In (2+1) dimensions it is shown that an additional (h -> -h) symmetry breaking term is generated due to the in-plane curvature associated with the mound like structures. This term is independent of any diffusion barrier differences between in-plane and out of-plane migration. It is argued that terms generated in the presence of downward hops are the relevant terms in a GE. Growth equation in the closed form is obtained for various growth models introduced to capture most of the processes in experimental Molecular Beam Epitaxial growth. Effect of dissociation is also considered and is seen to have stabilizing effect on the growth. It is shown that for uphill current the GE approach fails to describe the growth since a given GE is not valid over the entire substrate.Comment: 14 pages, 7 figure

    Island nucleation in the presence of step edge barriers: Theory and applications

    Full text link
    We develop a theory of nucleation on top of two-dimensional islands bordered by steps with an additional energy barrier ΔES\Delta E_S for descending atoms. The theory is based on the concept of the residence time of an adatom on the island,and yields an expression for the nucleation rate which becomes exact in the limit of strong step edge barriers. This expression differs qualitatively and quantitatively from that obtained using the conventional rate equation approach to nucleation [J. Tersoff et al., Phys. Rev. Lett.72, 266 (1994)]. We argue that rate equation theory fails because nucleation is dominated by the rare instances when two atoms are present on the island simultaneously. The theory is applied to two distinct problems: The onset of second layer nucleation in submonolayer growth, and the distribution of the sizes of top terraces of multilayer mounds under conditions of strong step edge barriers. Application to homoepitaxial growth on Pt(111) yields the estimate ΔES≥0.33\Delta E_S \geq 0.33 eV for the additional energy barrier at CO-decorated steps.Comment: 13 pages, 3 figure

    Survival-Time Distribution for Inelastic Collapse

    Full text link
    In a recent publication [PRL {\bf 81}, 1142 (1998)] it was argued that a randomly forced particle which collides inelastically with a boundary can undergo inelastic collapse and come to rest in a finite time. Here we discuss the survival probability for the inelastic collapse transition. It is found that the collapse-time distribution behaves asymptotically as a power-law in time, and that the exponent governing this decay is non-universal. An approximate calculation of the collapse-time exponent confirms this behaviour and shows how inelastic collapse can be viewed as a generalised persistence phenomenon.Comment: 4 pages, RevTe

    Quantum Dimensional Zeeman Effect in the Magneto-optical Absorption Spectrum for Quantum Dot - Impurity Center Systems

    Get PDF
    Magneto-optical properties of the quantum dot - impurity center (QD-IC) systems synthesized in a transparent dielectric matrix are considered. For the QD one-electron state description the parabolic model of the confinement potential is used. Within the framework of zero-range potential model and the effective mass approach, the light impurity absorption coefficient for the case of transversal polarization with respect to the applied magnetic field direction, with consideration of the QD size dispersion, has been analytically calculated. It is shown that for the case of transversal polarization the light impurity absorption spectrum is characterized by the quantum dimensional Zeeman effect.Comment: 18 pages, 1 figure, PDF fil
    • …
    corecore