3,733 research outputs found
Asymptotic simplicity and static data
The present article considers time symmetric initial data sets for the vacuum
Einstein field equations which in a neighbourhood of infinity have the same
massless part as that of some static initial data set. It is shown that the
solutions to the regular finite initial value problem at spatial infinity for
this class of initial data sets extend smoothly through the critical sets where
null infinity touches spatial infinity if and only if the initial data sets
coincide with static data in a neighbourhood of infinity. This result
highlights the special role played by static data among the class of initial
data sets for the Einstein field equations whose development gives rise to a
spacetime with a smooth conformal compactification at null infinity.Comment: 25 page
A rigidity property of asymptotically simple spacetimes arising from conformally flat data
Given a time symmetric initial data set for the vacuum Einstein field
equations which is conformally flat near infinity, it is shown that the
solutions to the regular finite initial value problem at spatial infinity
extend smoothly through the critical sets where null infinity touches spatial
infinity if and only if the initial data coincides with Schwarzschild data near
infinity.Comment: 37 page
Can one detect a non-smooth null infinity?
It is shown that the precession of a gyroscope can be used to elucidate the
nature of the smoothness of the null infinity of an asymptotically flat
spacetime (describing an isolated body). A model for which the effects of
precession in the non-smooth null infinity case are of order is
proposed. By contrast, in the smooth version the effects are of order .
This difference should provide an effective criterion to decide on the nature
of the smoothness of null infinity.Comment: 6 pages, to appear in Class. Quantum Gra
On the existence and convergence of polyhomogeneous expansions of zero-rest-mass fields
The convergence of polyhomogeneous expansions of zero-rest-mass fields in
asymptotically flat spacetimes is discussed. An existence proof for the
asymptotic characteristic initial value problem for a zero-rest-mass field with
polyhomogeneous initial data is given. It is shown how this non-regular problem
can be properly recast as a set of regular initial value problems for some
auxiliary fields. The standard techniques of symmetric hyperbolic systems can
be applied to these new auxiliary problems, thus yielding a positive answer to
the question of existence in the original problem.Comment: 10 pages, 1 eps figur
Applying Operations Research techniques to planning of train shunting
In this paper, we discuss a model-based algorithmic approach for supporting planners in the creation of shunt plans for passenger trains. The approach provides an example of a mathematical model and a corresponding solution approach for model based support. We introduce a four-step solution approach and we discuss how the planners are supported by this approach. Finally, we present computational results for these steps and give some suggestions for further research.A* search;railway optimization;real world application;routing
Polyhomogeneity and zero-rest-mass fields with applications to Newman-Penrose constants
A discussion of polyhomogeneity (asymptotic expansions in terms of and
) for zero-rest-mass fields and gravity and its relation with the
Newman-Penrose (NP) constants is given. It is shown that for spin-
zero-rest-mass fields propagating on Minkowski spacetime, the logarithmic terms
in the asymptotic expansion appear naturally if the field does not obey the
``Peeling theorem''. The terms that give rise to the slower fall-off admit a
natural interpretation in terms of advanced field. The connection between such
fields and the NP constants is also discussed. The case when the background
spacetime is curved and polyhomogeneous (in general) is considered. The free
fields have to be polyhomogeneous, but the logarithmic terms due to the
connection appear at higher powers of . In the case of gravity, it is
shown that it is possible to define a new auxiliary field, regular at null
infinity, and containing some relevant information on the asymptotic behaviour
of the spacetime. This auxiliary zero-rest-mass field ``evaluated at future
infinity ()'' yields the logarithmic NP constants.Comment: 19 page
Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data
The Conformal Einstein equations and the representation of spatial infinity
as a cylinder introduced by Friedrich are used to analyse the behaviour of the
gravitational field near null and spatial infinity for the development of data
which are asymptotically Euclidean, conformally flat and time asymmetric. Our
analysis allows for initial data whose second fundamental form is more general
than the one given by the standard Bowen-York Ansatz. The Conformal Einstein
equations imply upon evaluation on the cylinder at spatial infinity a hierarchy
of transport equations which can be used to calculate in a recursive way
asymptotic expansions for the gravitational field. It is found that the the
solutions to these transport equations develop logarithmic divergences at
certain critical sets where null infinity meets spatial infinity. Associated to
these, there is a series of quantities expressible in terms of the initial data
(obstructions), which if zero, preclude the appearance of some of the
logarithmic divergences. The obstructions are, in general, time asymmetric.
That is, the obstructions at the intersection of future null infinity with
spatial infinity are different, and do not generically imply those obtained at
the intersection of past null infinity with spatial infinity. The latter allows
for the possibility of having spacetimes where future and past null infinity
have different degrees of smoothness. Finally, it is shown that if both sets of
obstructions vanish up to a certain order, then the initial data has to be
asymptotically Schwarzschildean to some degree.Comment: 32 pages. First part of a series of 2 papers. Typos correcte
Explaining employees’ reactions towards a cross-border merger:the role of English language fluency
In this paper, we focus on the role of language in cross-border mergers and acquisitions and explore how organization members’ language skills, or fluency, in the adopted lingua franca may impact their reactions to a merger. Drawing on a qualitative study of the post-merger integration between a French and Dutch airline where English was adopted as a lingua franca, we illustrate how language fluency influences the ability of individuals to give meaning to their changed circumstances. Moreover, we elaborate on how language fluency indexes social groupings and identities, and may thus be a driver of perceptions of status inequality and identity politics between different groups of employees. With our study we draw attention to the multi-faceted role of English as a lingua franca. Our findings also contribute to research on sociocultural dynamics associated with post-merger integration and the role of language in mergers and acquisitions, as well as in multinational companies more generally
The conformal Einstein field equations and the local extension of future null infinity
We make use of an improved existence result for the characteristic initial value problem for the conformal Einstein equations to show that given initial data on two null hypersurfaces ⋆ and ′⋆ such that the conformal factor (but not its gradient) vanishes on a section of ⋆, one recovers a portion of null infinity. This result combined with the theory of the hyperboloidal initial value problem for the conformal Einstein field equations allows us to show the semi-global stability of the Minkowski spacetime from characteristic initial data
- …