747 research outputs found
Synchroneity of major late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms
Shallow-water carbonate systems are reliable recorders of sea level fluctuations and changes in ambient seawater conditions. Drilling results from Ocean Drilling Program (ODP) Legs 133 and 166 indicate that the timing of late Neogene sedimentary breaks triggered by sea level lowerings is synchronous in the sedimentary successions of the Queensland Plateau and the Great Bahama Bank. This synchrony indicates that these sea level changes were eustatic in origin. The carbonate platforms were also affected by contemporary, paleoceanographically controlled fluctuations in carbonate production. Paleoceanographic changes are recorded at 10.7, 3.6, and 1.7–2.0 Ma. At the Queensland Plateau, sea surface temperature shifts are documented by shifts from tropical to temperate carbonates (10.7 Ma) and vice versa (3.6 Ma); the modern tropical platform was established at 2.0–1.8 Ma. At Great Bahama Bank, changes were registered in compositional variations of platform-derived sediment, such as major occurrence of peloids (3.6 Ma) and higher rates of neritic carbonate input (1.7 Ma). The synchroneity of these changes attests to the far-field effects of modifications in the oceanographic circulation on shallow-water, low-latitude carbonate production
Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2)
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate of the Past 8 (2012): 977-993, doi:10.5194/cp-8-977-2012.The Early Eocene Thermal Maximum 2 (ETM2) at ~53.7 Ma is one of multiple hyperthermal events that followed the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma). The negative carbon excursion and deep ocean carbonate dissolution which occurred during the event imply that a substantial amount (103 Gt) of carbon (C) was added to the ocean-atmosphere system, consequently increasing atmospheric CO2(pCO2). This makes the event relevant to the current scenario of anthropogenic CO2 additions and global change. Resulting changes in ocean stratification and pH, as well as changes in exogenic cycles which supply nutrients to the ocean, may have affected the productivity of marine phytoplankton, especially calcifying phytoplankton. Changes in productivity, in turn, may affect the rate of sequestration of excess CO2 in the deep ocean and sediments. In order to reconstruct the productivity response by calcareous nannoplankton to ETM2 in the South Atlantic (Site 1265) and North Pacific (Site 1209), we employ the coccolith Sr/Ca productivity proxy with analysis of well-preserved picked monogeneric populations by ion probe supplemented by analysis of various size fractions of nannofossil sediments by ICP-AES. The former technique of measuring Sr/Ca in selected nannofossil populations using the ion probe circumvents possible contamination with secondary calcite. Avoiding such contamination is important for an accurate interpretation of the nannoplankton productivity record, since diagenetic processes can bias the productivity signal, as we demonstrate for Sr/Ca measurements in the fine (<20 μm) and other size fractions obtained from bulk sediments from Site 1265. At this site, the paleoproductivity signal as reconstructed from the Sr/Ca appears to be governed by cyclic changes, possibly orbital forcing, resulting in a 20–30% variability in Sr/Ca in dominant genera as obtained by ion probe. The ~13 to 21% increase in Sr/Ca above the cyclic background conditions as measured by ion probe in dominating genera may result from a slightly elevated productivity during ETM2. This high productivity phase is probably the result of enhanced nutrient supply either from land or from upwelling. The ion probe results show that calcareous nannoplankton productivity was not reduced by environmental conditions accompanying ETM2 at Site 1265, but imply an overall sustained productivity and potentially a small productivity increase during the extreme climatic conditions of ETM2 in this portion of the South Atlantic. However, in the open oceanic setting of Site 1209, a significant decrease in dominant genera Sr/Ca is observed, indicating reduced productivity.This work was supported by the Darwin Center
for Biogeosciences (MD and PZ), the National Science Foundation
(NSF EAR-0628336 to HMS) and the Spanish Minister of
Science and Innovation (MCINN PK122862 and AD122622)
Impact of the East African Rift System on the routing of the deep‐water drainage network offshore Tanzania, western Indian Ocean
Peer reviewedPostprin
Stratigraphy of Cretaceous to Lower Pliocene sediments in the northern part of Cyprus based on comparative 87Sr/86Sr isotopic, nannofossil and planktonic foraminiferal dating
New age data from Sr isotope analysis and both planktonic foraminifera and nannofossils are presented and discussed here for the Upper Eocene–Upper Miocene sedimentary rocks of the Değirmenlik (Kythrea) Group. New dating is also given of some Cretaceous and Pliocene sediments. In a revised stratigraphy the Değirmenlik (Kythrea) Group is divided into ten formations. Different Upper Miocene formations are developed to the north and south of a regionally important, E–W-trending syn-sedimentary fault. The samples were dated wherever possible by three independent methods, namely utilizing Sr isotopes, calcareous nannofossils and planktonic foraminifera. Some of the Sr isotopic dates are incompatible with the nannofossil and/or the planktonic foraminiferal dates. This is mainly due to reworking within gravity-deposited or current-affected sediments. When combined, the reliable age data allow an overall biostratigraphy and chronology to be erected. Several of the boundaries of previously defined formations are revised. Sr data that are incompatible with well-constrained biostratigraphical ages are commonly of Early Miocene age. This is attributed to a regional uplift event located to the east of Cyprus, specifically the collision of the Anatolian (Eurasian) and Arabian (African) plates during Early Miocene time. This study, therefore, demonstrates that analytically sound Sr isotopic ages can yield geologically misleading ages, particularly where extensive sediment reworking has occurred. Convincing ages are obtained when isotopic dating is combined with as many forms of biostratigraphical dating as possible, and this may also reveal previously unsuspected geological events (e.g. tectonic uplift or current activity)
- …