640 research outputs found

    Graphs related to E7(q):a quest for distance-transivity

    Get PDF

    Obesity-induced insulin resistance in human skeletal muscle is characterised by defective activation of p42/p44 MAP kinase

    Get PDF
    Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20–37 kg/m2). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min−1.m−2.), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR

    Dedicated versus mainstreaming approaches in local climate plans in Europe

    Get PDF
    Cities are gaining prominence committing to respond to the threat of climate change, e.g., by developing local climate plans or strategies. However, little is known regarding the approaches and processes of plan development and implementation, or the success and effectiveness of proposed measures. Mainstreaming is regarded as one approach associated with (implementation) success, but the extent of integration of local climate policies and plans in ongoing sectoral and/or development planning is unclear. This paper analyses 885 cities across the 28 European countries to create a first reference baseline on the degree of climate mainstreaming in local climate plans. This will help to compare the benefits of mainstreaming versus dedicated climate plans, looking at policy effectiveness and ultimately delivery of much needed climate change efforts at the city level. All core cities of the European Urban Audit sample were analyzed, and their local climate plans classified as dedicated or mainstreamed in other local policy initiatives. It was found that the degree of mainstreaming is low for mitigation (9% of reviewed cities; 12% of the identified plans) and somewhat higher for adaptation (10% of cities; 29% of plans). In particular horizontal mainstreaming is a major effort for local authorities; an effort that does not necessarily pay off in terms of success of action implementation. This study concludes that climate change issues in local municipalities are best tackled by either, developing a dedicated local climate plan in parallel to a mainstreamed plan or by subsequently developing first the dedicated and later a mainstreaming plan (joint or subsequent “dual track approach”). Cities that currently provide dedicated local climate plans (66% of cities for mitigation; 26% of cities for adaptation) may follow-up with a mainstreaming approach. This promises effective implementation of tangible climate actions as well as subsequent diffusion of climate issues into other local sector policies. The development of only broad sustainability or resilience strategies is seen as critical.We thank the many council representatives that supported the datacollection. Special thanks to Birgit Georgi who helped in setting up this large net work of researchers across the EU-28. We also thank the EU COST Action TU 0902 (ledbyRichardDawson) that established the core research network and the positive engagement and interaction of th emembers of this group. OH is Fellow of the Tyndall Centre for Climate Change Research and was funded by the UK EPSRC LC Transforms: Low Carbon Transitions of Fleet Operations in Metropolitan Sites Project (grant number EP/N010612/1). EKL was supported by the Ministry of Education, Youth and Sports, Czechia, within the National Sustainability Program I (NPU I) (grant number LO1415). DG ac-knowledges support by the Ministry of Education, University and Research (MIUR), Italy ("Departments of Excellence" grant L. 232/2016). HO was supported by the Ministry of Education and Research, Estonia (grantnumberIUT34-17). MO acknowledges funding from the Ministry of Economy and Competitiveness (MINECO), Spain (grant number IJCI-2016-28835). SS acknowledges that CENSE's research is partially funded by the Science Foundation, Portugal (grant number UID/AMB/04085/2019). The paper reflects only the views of the authors. The European Union, the European Environment Agency or other supporting bodies are not liable for any use that may be made of the information that is provided in this manuscript

    Exact steady state solution of the Boltzmann equation: A driven 1-D inelastic Maxwell gas

    Full text link
    The exact nonequilibrium steady state solution of the nonlinear Boltzmann equation for a driven inelastic Maxwell model was obtained by Ben-Naim and Krapivsky [Phys. Rev. E 61, R5 (2000)] in the form of an infinite product for the Fourier transform of the distribution function f(c)f(c). In this paper we have inverted the Fourier transform to express f(c)f(c) in the form of an infinite series of exponentially decaying terms. The dominant high energy tail is exponential, f(c)A0exp(ac)f(c)\simeq A_0\exp(-a|c|), where a2/1α2a\equiv 2/\sqrt{1-\alpha^2} and the amplitude A0A_0 is given in terms of a converging sum. This is explicitly shown in the totally inelastic limit (α0\alpha\to 0) and in the quasi-elastic limit (α1\alpha\to 1). In the latter case, the distribution is dominated by a Maxwellian for a very wide range of velocities, but a crossover from a Maxwellian to an exponential high energy tail exists for velocities cc01/q|c-c_0|\sim 1/\sqrt{q} around a crossover velocity c0lnq1/qc_0\simeq \ln q^{-1}/\sqrt{q}, where q(1α)/21q\equiv (1-\alpha)/2\ll 1. In this crossover region the distribution function is extremely small, lnf(c0)q1lnq\ln f(c_0)\simeq q^{-1}\ln q.Comment: 11 pages, 4 figures; a table and a few references added; to be published in PR

    An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit

    Get PDF
    International audienceIn this paper we propose a numerical scheme to solve the Kac model of the Boltzmann equation for multiscale rarefied gas dynamics. This scheme is uniformly stable with respect to the Knudsen number, consistent with the fluid-diffusion limit for small Knudsen numbers, and with the Kac equation in the kinetic regime. Our approach is based on the micro-macro decomposition which leads to an equivalent formulation of the Kac model that couples a kinetic equation with macroscopic ones. This method is validated with various test cases and compared to other standard methods

    Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle

    Get PDF
    Funding: The authors are supported by grants from the AstraZeneca SciLifeLab Research Programme, Novo Nordisk Foundation (NNF14OC0011493, and NNF17OC0030088), Swedish Diabetes Foundation (DIA2018-357), Swedish Research Council (2015-00165 and 2018-02389), the Knut and Alice Wallenberg Foundation (2018-0094), the Strategic Research Programme in Diabetes at Karolinska Institutet (2009-1068), the Stockholm County Council (SLL20170159), and the Swedish Research Council for Sport Science (P2019-0140). B.M.G. was supported by fellowships from the Novo Nordisk Foundation (NNF19OC0055072), the Wenner-Gren Foundation, an Albert Renold Travel Fellowship from the European Foundation for the Study of Diabetes, and an Eric Reid Fund for Methodology from the Biochemical Society. N.J.P. and L.S.-P. were supported by an Individual Fellowship from the Marie Skłodowska-Curie Actions (European Commission: 704978 and 675610). X.Z. and K.A.E. were supported by NIH R01AR066082. N.J.P. was supported by grants from the Sigurd och Elsa Goljes Minne and Lars Hierta Memorial Foundations (Sweden). We acknowledge the Beta Cell in-vivo Imaging/Extracellular Flux Analysis core facility supported by the Strategic Research Program in Diabetes for the usage of the Seahorse flux analyzer. Additional support was received from the Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen (NNF18CC0034900). The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research center at the University of Copenhagen, partially funded by an unrestricted donation from the Novo Nordisk Foundation. We acknowledge the Single-Cell Omics platform at the Novo Nordisk Foundation Center for Basic Metabolic Research for technical and computational expertise and support. Schematics are created with BioRender.com.Peer reviewedPublisher PD

    Two naturally occurring insulin receptor tyrosine kinase domain mutants provide evidence that phosphoinositide 3-kinase activation alone is not sufficient for the mediation of insulin's metabolic and mitogenic effects

    Get PDF
    We have recently reported (1) that two naturally occurring mutants of the insulin receptor tyrosine kinase domain, Arg-1174 --> Gln and Pro-1178 --> Leu (Gln-1174 and Leu1178, respectively), both found in patients with inherited severe insulin resistance, markedly impaired receptor tyrosine autophosphorylation, with both mutant receptors; being unable to mediate the stimulation of glycogen synthesis or mitogenesis by insulin when expressed hh Chinese hamster ovary cells, However, these mutations did not fully prevent IRS-1 phosphorylation in response to insulin in these cells, suggesting that IRS-1 alone may not be sufficient to mediate insulin's metabolic and mitogenic effects, In the present study, we have demonstrated that these mutations also impair the ability of the insulin receptor to activate the transcription factor Elk-1 and promote GLUT4 translocation to the plasma membrane, Although at law concentrations of insulin, the mutant receptors were impaired in their ability to stimulate the tyrosine phosphorylation of IRS-1, at higher insulin concentrations we confirmed that the cells expressing the mutant receptors showed significantly increased tyrosine phosphorylation of IRS-1 compared with parental nontransfected cells, In addition, at comparable insulin concentrations, the association of the p85 alpha subunit of phosphoinositide 3-kinase (PI3-kinase) with IRS-1 and the enzymatic activity of IRS-1-associated PI3-kinase were significantly enhanced in cells expressing the mutant receptors, in contrast, no significant stimulation of the tyrosine phosphorylation of Shc, GTP loading of Ras, or mitogen-activated protein kinase phosphorylation was seen in cell lines expressing these mutant receptors. Thus, no activation of any measurable mitogenic or metabolic response was detectable, despite significant insulin-induced phosphorylation of IRS-1 and its association with PI3-kinase in cells stably expressing the mutant insulin receptors, These findings suggest that PI3-kinase activation alone may be insufficient to mediate a wide range of the metabolic and mitogenic effects of insulin, Additionally, the data provide support for the notion that insulin activation of Ras is more closely linked with Shc, and not IRS-1, phosphorylation

    Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. METHODS AND FINDINGS\textbf{METHODS AND FINDINGS}: Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. CONCLUSIONS\textbf{CONCLUSIONS}: Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.MRC Epidemiology Unit, Fenland study, EPIC-InterAct study, EPIC-Norfolk case-cohort study funding: this study was funded by the United Kingdom’s Medical Research Council through grants MC_UU_12015/1, MC_UU_12015/5, MC_PC_13046, MC_PC_13048 and MR/L00002/1. We acknowledge support from the National Institute for Health Research Biomedical Research Centre. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement number 115372, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. EPIC-InterAct Study funding: funding for the InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_037197). MRC Human Nutrition Research funding: This research was supported by the Medical Research Council (MC_UP_A090_1006) and Cambridge Lipidomics Biomarker Research Initiative (G0800783). The SABRE study was funded at baseline by the UK Medical Research Council, Diabetes UK and the British Heart Foundation and at follow-up by a programme grant from the Wellcome Trust (WT082464) and British Heart Foundation (SP/07/001/23603); Diabetes UK funded the metabolomics analyses (13/0004774). RJOS, EN, JRZ and AK received funding from the Swedish Research Council, Stockholm County Council, Novo Nordisk Foundation and Diabetes Wellness. DBS is supported by the Wellcome Trust grant number 107064. MIM is a Wellcome Trust Senior Investigator and is supported by the following grants from the Wellcome Trust: 090532 and 098381. IB is supported by the Wellcome Trust grant WT098051

    Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis

    Get PDF
    BACKGROUND: Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. METHODS AND FINDINGS: Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. CONCLUSIONS: Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes
    corecore