528 research outputs found
FUNDAMENTALS OF PARAMETER ESTIMATION
Since the time that man first became involved with measurements, he has had to deal with the problems caused by discrepancies in different measurements of the same object. The attempt for reducing the effects of these discrepancies had led to the development of estimation theory.
The discrepancies or errors are generally regarded as being unknowable or random. To reduce their effect with respect to the quantity of interest one is led to the problem of defining an estimator.
The problem of estimating parameters from observational data can be traced from antiquity. From about 300 B.C. Babylonian astronomers dealt with this problem. Up to present times astronomical studies have provided a major stimulus for the development of estimation theory. In the 18. and 19. century we find essential contributions by Bernoulli, Euler, Legendre, Gauss and Bayes. In these days we recognize wide applications in the space technology, control and measurement theory
Effect of rounded corners on the magnetic properties of pyramidal-shaped shell structures
In recent years, the advance of novel chemical growth techniques has led to the fabrication of complex, three-dimensional magnetic nanostructures. The corners and edges of such realistic geometries are generally not sharp but rounded. In a previous article we have argued that high demagnetization fields in the vicinity of sharp edges lead to the formation of an asymmetric vortex state in pyramidal-shaped magnetic shell structures. The asymmetric vortex state is potentially interesting with respect to future magnetic memory devices. In this work a micromagnetic model is used to investigate the effect of rounded corners and edges on the magnetic reversal process within these pyramidal-shaped magnetic shell structures. In particular, we explore the degree of rounding, which has to be introduced in order to suppress the asymmetric vortex state. Another emphasis is placed on the magnetic reversal of (quasi-)homogeneous states within these structures. We demonstrate that the rounding of corners significantly reduces the coercivity. This complies with former studies on cuboidal structures, which suggest the important effect of corners on the magnetic reversal of homogeneous magnetic states. The present study uses a finite-element discretization for the numerical solution of the micromagnetic equations, which provides flexibility with respect to the modeling of complex shapes. In particular, this method is very accurate with respect to structures with a smooth surface
Power-law decay in first-order relaxation processes
Starting from a simple definition of stationary regime in first-order
relaxation processes, we obtain that experimental results are to be fitted to a
power-law when approaching the stationary limit. On the basis of this result we
propose a graphical representation that allows the discrimination between
power-law and stretched exponential time decays. Examples of fittings of
magnetic, dielectric and simulated relaxation data support the results.Comment: to appear in Phys. Rev. B; 4 figure
Fundamental Magnetic Properties and Structural Implications for Nanocrystalline Fe-Ti-N Thin Films
The magnetization (M) as a function of temperature (T) from 2 to 300 K and
in-plane field (H) up to 1 kOe, room temperature easy and hard direction
in-plane field hysteresis loops for fields between -100 and +100 Oe, and 10 GHz
ferromagnetic resonance (FMR) profiles have been measured for a series of
soft-magnetic nano-crystalline 50 nm thick Fe-Ti-N films made by magnetron
sputtering in an in-plane field. The nominal titanium concentration was 3 at. %
and the nitrogen concentrations (xN) ranged from zero to 12.7 at. %. The
saturation magnetization (Ms) vs. T data and the extracted exchange parameters
as a function of xN are consistent with a lattice expansion due to the addition
of interstitial nitrogen in the body-centered-cubic (bcc) lattice and a
structural transition to body-centered-tetragonal (bct) in the 6-8 at. %
nitrogen range. The hysteresis loop and FMR data show a consistent picture of
the changes in both the uniaxial and cubic anisotropy as a function of xN.
Films with xN > 1.9 at. % show an overall uniaxial anisotropy, with an
anisotropy field parameter Hu that increases with xN. The corresponding
dispersion averaged uniaxial anisotropy energy density parameter = HuMs/2
is a linear function of xN, with a rate of increase of 950 erg/cm3 per at. %
nitrogen. The estimated uniaxial anisotropy energy per nitrogen atom is 30
J/mol, a value consistent with other systems. For xN below 6 at. %, the scaling
of coercive force Hc data with the sixth power of the grain size D indicate a
grain averaged effective cubic anisotropy energy density parameter that is
about an order of magnitude smaller that the nominal K1 values for iron, and
give a quantitative vs. D response that matches predictions for exchange
coupled random grains with cubic anisotropy.Comment: 13 pages, 7 figure
Multiscale nature of hysteretic phenomena: Application to CoPt-type magnets
We suggest a workable approach for the description of multiscale
magnetization reversal phenomena in nanoscale magnets and apply it to CoPt-type
alloys. We show that their hysteretic properties are governed by two effects
originating at different length scales: a peculiar splitting of domain walls
and their strong pinning at antiphase boundaries. We emphasize that such
multiscale nature of hysteretic phenomena is a generic feature of nanoscale
magnetic materials.Comment: 4 pages (revtex 4), 2 color EPS figure
Layer charge instability in unbalanced bilayer systems in the quantum Hall regime
Measurements in GaAs hole bilayers with unequal layer densities reveal a
pronounced magneto-resistance hysteresis at the magnetic field positions where
either the majority or minority layer is at Landau level filling factor one. At
a fixed field in the hysteretic regions, the resistance exhibits an unusual
time dependence, consisting of random, bidirectional jumps followed by slow
relaxations. These anomalies are apparently caused by instabilities in the
charge distribution of the two layers.Comment: 4 pages, 4 figure
Electrically-Controlled Nuclear Spin Polarization and Relaxation by Quantum-Hall states
We investigate interactions between electrons and nuclear spins by using the
resistance (Rxx) peak which develops near filling factor n = 2/3 as a probe. By
temporarily tuning n to a different value, ntemp, with a gate, the Rxx peak is
shown to relax quickly on both sides of ntemp = 1. This is due to enhanced
nuclear spin relaxation by Skyrmions, and demonstrates the dominant role of
nuclear spin in the transport anomaly near n = 2/3. We also observe an
additional enhancement in the nuclear spin relaxation around n = 1/2 and 3/2,
which suggests a Fermi sea of partially-polarized composite fermions.Comment: 6 pages, 3 figure
Probing fractal magnetic domains on multiple length scales in Nd2Fe14B
Using small-angle neutron scattering, we demonstrate that the complex
magnetic domain patterns at the surface of Nd2Fe14B, revealed by quantitative
Kerr and Faraday microscopy, propagate into the bulk and exhibit structural
features with dimensions down to 6 nm, the domain wall thickness. The observed
fractal nature of the domain structures provides an explanation for the
anomalous increase in the bulk magnetization of Nd2Fe14B below the
spin-reorientation transition. These measurements open up a rich playground for
studies of fractal structures in highly anisotropic magnetic systems.Comment: Accepted for publication in Phys. Rev. Lett. (4 pages, 4 figures
Buckling instability in type-II superconductors with strong pinning
We predict a novel buckling instability in the critical state of thin type-II
superconductors with strong pinning. This elastic instability appears in high
perpendicular magnetic fields and may cause an almost periodic series of flux
jumps visible in the magnetization curve. As an illustration we apply the
obtained criteria to a long rectangular strip.Comment: Submitted to Phys. Rev. Let
- …