14 research outputs found

    Evaluating catchment-scale hydrological modeling by means of terrestrial gravity observations

    No full text
    In a previous study (Hasan et al., 2006) we applied time series analysis and distributed hydrological modeling techniques to investigate the effect of hydrological processes on observed terrestrial gravity residuals. In this study we apply terrestrial gravity observations (measured in one location) to constrain simple hydrological models in a catchment around the gravimeter. A superconducting gravimeter observes with high frequency (1 Hz) the temporal variations in the gravity field with high accuracy (sub nm s¿2 for hourly variation) near Moxa, Germany since 1999. Hourly gravity residuals are derived by filtering and reducing for Earth tides, polar motion, barometric pressure variations, and instrumental drift. These gravity residuals show significant response to hydrological processes (precipitation, evaporation, surface and subsurface flow) in the catchment surrounding the observatory. We can thus consider the observed gravity change as an integrator of catchment-scale hydrological response (similar in nature as discharge measurements), and therefore use it to constrain catchment-scale hydrologic models. We test a set of simple water balance models against measured discharge, and employ observed gravity residuals to evaluate model parameters. Results indicate that a lumped water balance model for unsaturated storage and fluxes, coupled with a semidistributed hydraulic groundwater model for saturated storage and fluxes, successfully reproduces both gravity and discharge dynamic

    Multistage Magnetic and Electrophoretic Extraction of Cells, Particles and Macromolecules

    No full text

    Liquid-liquid extraction of biomolecules in downstream processing - A review paper

    No full text
    Economic analysis shows that protein separation and purification are a very important aspect of biomolecules production and processing. This is particularly true for protein processing which, because of the complexity of the starting material, often requires many steps to reach the levels of purity required for medical and food applications. The separation specialists' task is to develop safe and simple processes to achieve products with a high level of purity. On a large scale, chromatography of proteins is not an easily applied method, although on a laboratory scale it is very effective and relatively simple. When it is scaled up, shortcomings such as discontinuity in the process, slow protein diffusion and large pressure drops in the system are seen. For these reasons a substantial research effort has been directed toward the use of aqueous two-phase systems (ATPSs) to replace the initial steps in protein purification and chromatography. This article reviews the chronology and main ATPS fundamentals and discuss the broader applications of this type of system in the extraction and separation of biomolecules
    corecore