899 research outputs found
Helium-ignited violent mergers as a unified model for normal and rapidly declining Type Ia Supernovae
The progenitors of Type Ia Supernovae (SNe Ia) are still unknown, despite
significant progress during the last years in theory and observations. Violent
mergers of two carbon--oxygen (CO) white dwarfs (WDs) are one candidate
suggested to be responsible for at least a significant fraction of normal SNe
Ia. Here, we simulate the merger of two CO WDs using a moving-mesh code that
allows for the inclusion of thin helium (He) shells (0.01\,\msun) on top of the
WDs, at an unprecedented numerical resolution. The accretion of He onto the
primary WD leads to the formation of a detonation in its He shell. This
detonation propagates around the CO WD and sends a converging shock wave into
its core, known to robustly trigger a second detonation, as in the well-known
double-detonation scenario for
He-accreting CO WDs. However, in contrast to that scenario where a massive He
shell is required to form a detonation through thermal instability, here the He
detonation is ignited dynamically. Accordingly the required He-shell mass is
significantly smaller, and hence its burning products are unlikely to affect
the optical display of the explosion. We show that this scenario, which works
for CO primary WDs with CO- as well as He-WD companions, has the potential to
explain the different brightness distributions, delay times and relative rates
of normal and fast declining SNe Ia. Finally, we discuss extensions to our
unified merger model needed to obtain a comprehensive picture of the full
observed diversity of SNe Ia.Comment: accepted for publication by ApJL, significant changes to first
version, including addition of merger simulatio
Oxygen emission in remnants of thermonuclear supernovae as a probe for their progenitor system
Recent progress in numerical simulations of thermonuclear supernova
explosions brings up a unique opportunity in studying the progenitors of Type
Ia supernovae. Coupling state-of-the-art explosion models with detailed
hydrodynamical simulations of the supernova remnant evolution and the most
up-to-date atomic data for X-ray emission calculations makes it possible to
create realistic synthetic X-ray spectra for the supernova remnant phase.
Comparing such spectra with high quality observations of supernova remnants
could allow to constrain the explosion mechanism and the progenitor of the
supernova. The present study focuses in particular on the oxygen emission line
properties in young supernova remnants, since different explosion scenarios
predict a different amount and distribution of this element. Analysis of the
soft X-ray spectra from supernova remnants in the Large Magellanic Cloud and
confrontation with remnant models for different explosion scenarios suggests
that SNR 0509-67.5 could originate from a delayed detonation explosion and SNR
0519-69.0 from an oxygen-rich merger.Comment: 8 pages, 4 figures, MNRAS accepte
Early light curves for Type Ia supernova explosion models
Upcoming high-cadence transient survey programmes will produce a wealth of
observational data for Type Ia supernovae. These data sets will contain
numerous events detected very early in their evolution, shortly after
explosion. Here, we present synthetic light curves, calculated with the
radiation hydrodynamical approach Stella for a number of different explosion
models, specifically focusing on these first few days after explosion. We show
that overall the early light curve evolution is similar for most of the
investigated models. Characteristic imprints are induced by radioactive
material located close to the surface. However, these are very similar to the
signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from
the pure deflagration explosion models, none of our synthetic light curves
exhibit the commonly assumed power-law rise. We demonstrate that this can lead
to substantial errors in the determination of the time of explosion. In
summary, we illustrate with our calculations that even with very early data an
identification of specific explosion scenarios is challenging, if only
photometric observations are available.Comment: 15 pages, 14 figures, 3 tables, accepted for publication in MNRA
Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts: the distance to SN 2013eq
Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq,
we present a comparative study of commonly used distance determination methods
based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z
= 0.041 +/- 0.001) prompted us to investigate the implications of the
difference between "angular" and "luminosity" distances within the framework of
the expanding photosphere method (EPM) that relies upon a relation between flux
and angular size to yield a distance. Following a re-derivation of the basic
equations of the EPM for SNe at non-negligible redshifts, we conclude that the
EPM results in an angular distance. The observed flux should be converted into
the SN rest frame and the angular size, theta, has to be corrected by a factor
of (1+z)^2. Alternatively, the EPM angular distance can be converted to a
luminosity distance by implementing a modification of the angular size. For SN
2013eq, we find EPM luminosity distances of D_L = 151 +/- 18 Mpc and D_L = 164
+/- 20 Mpc by making use of different sets of dilution factors taken from the
literature. Application of the standardized candle method for Type II-P SNe
results in an independent luminosity distance estimate (D_L = 168 +/- 16 Mpc)
that is consistent with the EPM estimate.Comment: 12 pages, 4 figures, accepted by A&
Type Ia Supernovae and Accretion Induced Collapse
Using the population synthesis binary evolution code StarTrack, we present
theoretical rates and delay times of Type Ia supernovae arising from various
formation channels. These channels include binaries in which the exploding
white dwarf reaches the Chandrasekhar mass limit (DDS, SDS, and helium-rich
donor scenario) as well as the sub-Chandrasekhar mass scenario, in which a
white dwarf accretes from a helium-rich companion and explodes as a SN Ia
before reaching the Chandrasekhar mass limit. We find that using a common
envelope parameterization employing energy balance with alpha=1 and lambda=1,
the supernova rates per unit mass (born in stars) of sub-Chandrasekhar mass SNe
Ia exceed those of all other progenitor channels at epochs t=0.7 - 4 Gyr for a
burst of star formation at t=0. Additionally, the delay time distribution of
the sub-Chandrasekhar model can be divided in to two distinct evolutionary
channels: the `prompt' helium-star channel with delay times < 500 Myr, and the
`delayed' double white dwarf channel with delay times > 800 Myr spanning up to
a Hubble time. These findings are in agreement with recent
observationally-derived delay time distributions which predict that a large
number of SNe Ia have delay times < 1 Gyr, with a significant fraction having
delay times < 500 Myr. We find that the DDS channel is also able to account for
the observed rates of SNe Ia. However, detailed simulations of white dwarf
mergers have shown that most of these mergers will not lead to SNe Ia but
rather to the formation of a neutron star via accretion-induced collapse. If
this is true, our standard population synthesis model predicts that the only
progenitor channel which can account for the rates of SNe Ia is the
sub-Chandrasekhar mass scenario, and none of the other progenitors considered
can fully account for the observed rates.Comment: 6 pages, 1 figure, 1 table, to appear in proceedings for "Binary Star
Evolution: Mass Loss, Accretion and Mergers
Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at
The light from distant supernovae (SNe) can be magnified through
gravitational lensing when a foreground galaxy is located along the line of
sight. This line-up allows for detailed studies of SNe at high redshift that
otherwise would not be possible. Spectroscopic observations of lensed
high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they
can be used to test for evolution of their intrinsic properties. The use of SNe
Ia for probing the cosmic expansion history has proven to be an extremely
powerful method for measuring cosmological parameters. However, if systematic
redshift-dependent properties are found, their usefulness for future surveys
could be challenged. We investigate whether the spectroscopic properties of the
strongly lensed and very distant SN Ia PS1-10afx at deviates from the
well-studied populations of normal SNe Ia at nearby or intermediate distance.
We created median spectra from nearby and intermediate-redshift
spectroscopically normal SNe Ia from the literature at -5 and +1 days from
light-curve maximum. We then compared these median spectra to those of
PS1-10afx. We do not find signs of spectral evolution in PS1-10afx. The
observed deviation between PS1-10afx and the median templates are within what
is found for SNe at low- and intermediate-redshift. There is a noticeable broad
feature centred at ~\AA{}, which is present only to a
lesser extent in individual low and intermediate redshift SN Ia spectra. From a
comparison with a recently developed explosion model, we find this feature to
be dominated by iron peak elements, in particular, singly ionized cobalt and
chromium.Comment: accepted for publication in section 4. Extragalactic astronomy of
Astronomy and Astrophysic
Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha
Stellar evolution models predict the existence of hybrid white dwarfs (WDs)
with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with
masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the
Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear
explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid
WD under the assumption that nuclear burning only occurs in carbon-rich
material. Performing hydrodynamics simulations of the explosion and detailed
nucleosynthesis post-processing calculations, we find that only 0.014 Msun of
material is ejected while the remainder of the mass stays bound. The ejecta
consist predominantly of iron-group elements, O, C, Si and S. We also calculate
synthetic observables for our model and find reasonable agreement with the
faint Type Iax SN 2008ha. This shows for the first time that deflagrations in
near-MCh WDs can in principle explain the observed diversity of Type Iax
supernovae. Leaving behind a near-MCh bound remnant opens the possibility for
recurrent explosions or a subsequent accretion-induced collapse in faint Type
Iax SNe, if further accretion episodes occur. From binary population synthesis
calculations, we find the rate of hybrid WDs approaching MCh to be on the order
of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA
Quantitative spectral analysis of the sdB star HD 188112: a helium-core white dwarf progenitor
HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass
too low to ignite core helium burning and is therefore considered as a
pre-extremely low mass (ELM) white dwarf (WD). ELM WDs (M 0.3 Msun) are
He-core objects produced by the evolution of compact binary systems. We present
in this paper a detailed abundance analysis of HD 188112 based on
high-resolution Hubble Space Telescope (HST) near and far-ultraviolet
spectroscopy. We also constrain the mass of the star's companion. We use hybrid
non-LTE model atmospheres to fit the observed spectral lines and derive the
abundances of more than a dozen elements as well as the rotational broadening
of metallic lines. We confirm the previous binary system parameters by
combining radial velocities measured in our UV spectra with the already
published ones. The system has a period of 0.60658584 days and a WD companion
with M 0.70 Msun. By assuming a tidally locked rotation, combined with
the projected rotational velocity (v sin i = 7.9 0.3 km s) we
constrain the companion mass to be between 0.9 and 1.3 Msun. We further discuss
the future evolution of the system as a potential progenitor of a
(underluminous) type Ia supernova. We measure abundances for Mg, Al, Si, P, S,
Ca, Ti, Cr, Mn, Fe, Ni, and Zn, as well as for the trans-iron elements Ga, Sn,
and Pb. In addition, we derive upper limits for the C, N, O elements and find
HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE
effects on the line strength of some ionic species such as Si II and Ni II. The
metallic abundances indicate that the star is metal-poor, with an abundance
pattern most likely produced by diffusion effects.Comment: Accepted for publication in A&
Exploring different methods of cellulose extraction for 14C dating
In this study we aim to identify the optimal cellulose extraction protocol for 14C dating of wood, with a focus on glacial trees. To achieve this, we compare three cellulose extraction methods on the basis of cellulose yield and 14C age. The study is conducted on 12 wood samples of different species, in varying states of preservation with ages covering the full 14C age range. Cellulose is extracted from each sample following three different protocols selected from the literature: ABA-B, BABAB and 2Chlorox. The extracted cellulose was graphitised and dated with the MICADAS (Mini Carbon Dating System) at the ETH AMS laboratory. Although all three methods are considered efficient, the BABAB protocol, despite being a more aggressive procedure, allows the extraction of a sufficient amount of cellulose to be 14C dated and leads to the most reliable results, particularly for very old and background samples (samples with 14C content of zero)
- …