531 research outputs found
The Elliptic curves in gauge theory, string theory, and cohomology
Elliptic curves play a natural and important role in elliptic cohomology. In
earlier work with I. Kriz, thes elliptic curves were interpreted physically in
two ways: as corresponding to the intersection of M2 and M5 in the context of
(the reduction of M-theory to) type IIA and as the elliptic fiber leading to
F-theory for type IIB. In this paper we elaborate on the physical setting for
various generalized cohomology theories, including elliptic cohomology, and we
note that the above two seemingly unrelated descriptions can be unified using
Sen's picture of the orientifold limit of F-theory compactification on K3,
which unifies the Seiberg-Witten curve with the F-theory curve, and through
which we naturally explain the constancy of the modulus that emerges from
elliptic cohomology. This also clarifies the orbifolding performed in the
previous work and justifies the appearance of the w_4 condition in the elliptic
refinement of the mod 2 part of the partition function. We comment on the
cohomology theory needed for the case when the modular parameter varies in the
base of the elliptic fibration.Comment: 23 pages, typos corrected, minor clarification
Duality symmetry and the form fields of M-theory
In previous work we derived the topological terms in the M-theory action in
terms of certain characters that we defined. In this paper, we propose the
extention of these characters to include the dual fields. The unified treatment
of the M-theory four-form field strength and its dual leads to several
observations. In particular we elaborate on the possibility of a twisted
cohomology theory with a twist given by degrees greater than three.Comment: 12 pages, modified material on the differentia
M-theory and Characteristic Classes
In this note we show that the Chern-Simons and the one-loop terms in the
M-theory action can be written in terms of new characters involving the
M-theory four-form and the string classes. This sheds a new light on the
topological structure behind M-theory and suggests the construction of a theory
of `higher' characteristic classes.Comment: 8 pages. Error in gravitational term fixed; minor corrections;
reference and acknowledgement adde
Equivariant Formal Group Laws
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135640/1/plms0355.pd
A mathematical formalism for the Kondo effect in WZW branes
In this paper, we show how to adapt our rigorous mathematical formalism for
closed/open conformal field theory so that it captures the known physical
theory of branes in the WZW model. This includes a mathematically precise
approach to the Kondo effect, which is an example of evolution of one
conformally invariant boundary condition into another through boundary
conditions which can break conformal invariance, and a proposed mathematical
statement of the Kondo effect conjecture. We also review some of the known
physical results on WZW boundary conditions from a mathematical perspective.Comment: Added explanations of the settings and main result
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei
We present self-consistent models of the vertical structure and emergent
spectrum of AGN accretion disks. The central object is assumed to be a
supermassive Kerr black hole. We demonstrate that NLTE effects and the effects
of a self-consistent vertical structure of a disk play a very important role in
determining the emergent radiation, and therefore should be taken into account.
In particular, NLTE models exhibit a largely diminished H I Lyman discontinuity
when compared to LTE models, and the He II discontinuity appears strongly in
emission for NLTE models. Consequently, the number of ionizing photons in the
He II Lyman continuum predicted by NLTE disk models is by 1 - 2 orders of
magnitude higher than that following from the black-body approximation. This
prediction has important implications for ionization models of AGN broad line
regions, and for models of the intergalactic radiation field and the ionization
of helium in the intergalactic medium.Comment: 11 pages; 2 postscript figures; LaTeX, AASPP4 macro; to appear in the
Astrophysical Journal (Letters
Galois theory and Lubin-Tate cochains on classifying spaces
We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n , and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group C p r, the cochain extension F(BC p r +,E n ) → F(EC p r +, E n ) is not a Galois extension because it ramifies. As a consequence, it follows that the E n -theory Eilenberg-Moore spectral sequence for G and BG does not always converge to its expected target
Twisted topological structures related to M-branes
Studying the M-branes leads us naturally to new structures that we call
Membrane-, Membrane^c-, String^K(Z,3)- and Fivebrane^K(Z,4)-structures, which
we show can also have twisted counterparts. We study some of their basic
properties, highlight analogies with structures associated with lower levels of
the Whitehead tower of the orthogonal group, and demonstrate the relations to
M-branes.Comment: 17 pages, title changed on referee's request, minor changes to
improve presentation, typos correcte
- …