531 research outputs found

    The Elliptic curves in gauge theory, string theory, and cohomology

    Full text link
    Elliptic curves play a natural and important role in elliptic cohomology. In earlier work with I. Kriz, thes elliptic curves were interpreted physically in two ways: as corresponding to the intersection of M2 and M5 in the context of (the reduction of M-theory to) type IIA and as the elliptic fiber leading to F-theory for type IIB. In this paper we elaborate on the physical setting for various generalized cohomology theories, including elliptic cohomology, and we note that the above two seemingly unrelated descriptions can be unified using Sen's picture of the orientifold limit of F-theory compactification on K3, which unifies the Seiberg-Witten curve with the F-theory curve, and through which we naturally explain the constancy of the modulus that emerges from elliptic cohomology. This also clarifies the orbifolding performed in the previous work and justifies the appearance of the w_4 condition in the elliptic refinement of the mod 2 part of the partition function. We comment on the cohomology theory needed for the case when the modular parameter varies in the base of the elliptic fibration.Comment: 23 pages, typos corrected, minor clarification

    Duality symmetry and the form fields of M-theory

    Full text link
    In previous work we derived the topological terms in the M-theory action in terms of certain characters that we defined. In this paper, we propose the extention of these characters to include the dual fields. The unified treatment of the M-theory four-form field strength and its dual leads to several observations. In particular we elaborate on the possibility of a twisted cohomology theory with a twist given by degrees greater than three.Comment: 12 pages, modified material on the differentia

    M-theory and Characteristic Classes

    Full text link
    In this note we show that the Chern-Simons and the one-loop terms in the M-theory action can be written in terms of new characters involving the M-theory four-form and the string classes. This sheds a new light on the topological structure behind M-theory and suggests the construction of a theory of `higher' characteristic classes.Comment: 8 pages. Error in gravitational term fixed; minor corrections; reference and acknowledgement adde

    Equivariant Formal Group Laws

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135640/1/plms0355.pd

    A mathematical formalism for the Kondo effect in WZW branes

    Full text link
    In this paper, we show how to adapt our rigorous mathematical formalism for closed/open conformal field theory so that it captures the known physical theory of branes in the WZW model. This includes a mathematically precise approach to the Kondo effect, which is an example of evolution of one conformally invariant boundary condition into another through boundary conditions which can break conformal invariance, and a proposed mathematical statement of the Kondo effect conjecture. We also review some of the known physical results on WZW boundary conditions from a mathematical perspective.Comment: Added explanations of the settings and main result

    Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei

    Full text link
    We present self-consistent models of the vertical structure and emergent spectrum of AGN accretion disks. The central object is assumed to be a supermassive Kerr black hole. We demonstrate that NLTE effects and the effects of a self-consistent vertical structure of a disk play a very important role in determining the emergent radiation, and therefore should be taken into account. In particular, NLTE models exhibit a largely diminished H I Lyman discontinuity when compared to LTE models, and the He II discontinuity appears strongly in emission for NLTE models. Consequently, the number of ionizing photons in the He II Lyman continuum predicted by NLTE disk models is by 1 - 2 orders of magnitude higher than that following from the black-body approximation. This prediction has important implications for ionization models of AGN broad line regions, and for models of the intergalactic radiation field and the ionization of helium in the intergalactic medium.Comment: 11 pages; 2 postscript figures; LaTeX, AASPP4 macro; to appear in the Astrophysical Journal (Letters

    Galois theory and Lubin-Tate cochains on classifying spaces

    Get PDF
    We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n , and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group C p r, the cochain extension F(BC p r +,E n ) → F(EC p r +, E n ) is not a Galois extension because it ramifies. As a consequence, it follows that the E n -theory Eilenberg-Moore spectral sequence for G and BG does not always converge to its expected target

    Twisted topological structures related to M-branes

    Full text link
    Studying the M-branes leads us naturally to new structures that we call Membrane-, Membrane^c-, String^K(Z,3)- and Fivebrane^K(Z,4)-structures, which we show can also have twisted counterparts. We study some of their basic properties, highlight analogies with structures associated with lower levels of the Whitehead tower of the orthogonal group, and demonstrate the relations to M-branes.Comment: 17 pages, title changed on referee's request, minor changes to improve presentation, typos correcte
    • …
    corecore