1,878 research outputs found
Dietary Patterns and Cognitive Function among Older Community-Dwelling Adults.
Diet may be an important modifiable risk factor for maintenance of cognitive health in later life. This study aimed at examining associations between common dietary indices and dietary patterns defined by factor analysis and cognitive function in older community-dwelling adults. Dietary information for 1499 participants from the Rancho Bernardo Study was collected in 1988⁻1992 and used to calculate the alternate Mediterranean diet score, Alternate Healthy Eating Index (AHEI)-2010 score and factor scores derived from factor analysis of nutrients. Global cognitive function, executive function, verbal fluency and episodic memory were assessed at approximate four-year intervals from 1988⁻2016. Linear mixed models were used to examine associations between dietary patterns and cognitive trajectories. Estimates for the highest vs. lowest tertile in models adjusting for age, sex, education, energy intake, lifestyle variables and retest effect showed greater adherence to the Mediterranean score was associated with better baseline global cognitive function (β (95% CI) = 0.33 (0.11, 0.55)). The AHEI-2010 score was not significantly associated with cognitive performance. Higher loading on a plant polyunsaturated fatty acid (PUFA)/vitamin E factor was associated with better baseline global cognitive function and executive function (β = 0.22 (0.02, 0.42) and β = -7.85 (-13.20, -2.47)). A sugar/low protein factor was associated with poorer baseline cognitive function across multiple domains. Dietary patterns were not associated with cognitive decline over time. Adherence to a healthy diet with foods high in PUFA and vitamin E and a low sugar to protein ratio, as typified by a Mediterranean diet, may be beneficial for cognitive health in late life
DRG-targeted helper-dependent adenoviruses mediate selective gene delivery for therapeutic rescue of sensory neuronopathies in mice
Dorsal root ganglion (DRG) neuron dysfunction occurs in a variety of sensory neuronopathies for which there are currently no satisfactory treatments. Here we describe the development of a strategy to target therapeutic genes to DRG neurons for the treatment of these disorders. We genetically modified an adenovirus (Ad) to generate a helper virus (HV) that was detargeted for native adenoviral tropism and contained DRG homing peptides in the adenoviral capsid fiber protein; we used this HV to generate DRG-targeted helper-dependent Ad (HDAd). In mice, intrathecal injection of this HDAd produced a 100-fold higher transduction of DRG neurons and a markedly attenuated inflammatory response compared with unmodified HDAd. We also injected HDAd encoding the β subunit of β-hexosaminidase (Hexb) into Hexb-deficient mice, a model of the neuronopathy Sandhoff disease. Delivery of the DRG-targeted HDAd reinstated neuron-specific Hexb production, reversed gangliosidosis, and ameliorated peripheral sensory dysfunction. The development of DRG neuron–targeted HDAd with proven efficacy in a preclinical model may have implications for the treatment of sensory neuronopathies of diverse etiologies
Comparing placentas from normal and abnormal pregnancies
This report describes work carried out at a Mathematics-in-Medicine Study Group. It is believed that placenta shape villous network characteristics are strongly linked to the placenta’s efficiency, and hence to pregnancy outcome. We were asked to consider mathematical ways to describe the shape and other characteristics of a placenta, as well as forming mathematical models for placenta development. In this report we propose a number of possible measure of placental shape, form, and efficiency, which can be computed from images already obtained. We also consider various models for the early development of placentas and the growth of the villous tree
Physics basis of Multi-Mode anomalous transport module
The derivation of Multi-Mode anomalous transport module version 8.1 (MMM8.1) is presented. The MMM8.1 module is advanced, relative to MMM7.1, by the inclusion of peeling modes, dependence of turbulence correlation length on flow shear, electromagnetic effects in the toroidal momentum diffusivity, and the option to compute poloidal momentum diffusivity. The MMM8.1 model includes a model for ion temperature gradient, trapped electron, kinetic ballooning, peeling, collisionless and collision dominated magnetohydrodynamics modes as well as model for electron temperature gradient modes, and a model for drift resistive inertial ballooning modes. In the derivation of the MMM8.1 module, effects of collisions, fast ion and impurity dilution, non-circular flux surfaces, finite beta, and Shafranov shift are included. The MMM8.1 is used to compute thermal, particle, toroidal, and poloidal angular momentum transports. The fluid approach which underlies the derivation of MMM8.1 is expected to reliably predict, on an energy transport time scale, the evolution of temperature, density, and momentum profiles in plasma discharges for a wide range of plasma conditions
Lower hybrid oscillating two-stream instability in a plasma with magnetic shear
Magnetic shear is found to have a strong effect on the propagation characteristics of the lower hybrid parametric daughter waves but no significant effect on the pump wave. The analysis of the OTS instability shows that the convective damping introduced by magnetic shear acts on a distance L H(me/mi)½, where H is the magnetic shear scale length. There are two regimes for the convective damping, depending on the wavelength of the parametric daughter waves. For small wavelengths the growth rates are linear functions of (kL)-1. For large wavelengths the growth rates are exponentially decreasing functions of (kL)-
Transport of sulfur dioxide from the Asian Pacific Rim to the North Pacific troposphere
The NASA Pacific Exploratory Mission over the Western Pacific Ocean (PEM-West B) field experiment provided an opportunity to study sulfur dioxide (SO2) in the troposphere over the western Pacific Ocean from the tropics to 60°N during February–March 1993. The large suite of chemical and physical measurements yielded a complex matrix in which to understand the distribution of sulfur dioxide over the western Pacific region. In contrast to the late summer period of Pacific Exploratory Mission-West A (PEM-West A) (1991) over this same area, SO2showed little increase with altitude, and concentrations were much lower in the free troposphere than during the PEM-West B period. Volcanic impacts on the upper troposphere were again found as a result of deep convection in the tropics. Extensive emission of SO2 from the Pacific Rim land masses were primarily observed in the lower well-mixed part of the boundary layer but also in the upper part of the boundary layer. Analyses of the SO2 data with aerosol sulfate, beryllium-7, and lead-210 indicated that SO2 contributed to half or more of the observed total oxidized sulfur (SO2 plus aerosol sulfate) in free tropospheric air. The combined data set suggests that SO2 above 8.5 km is transported from the surface but with aerosol sulfate being removed more effectively than SO2. Cloud processing and rain appeared to be responsible for lower SO2 levels between 3 and 8.5 km than above or below this region
Plasma Edge Kinetic-MHD Modeling in Tokamaks Using Kepler Workflow for Code Coupling, Data Management and Visualization
A new predictive computer simulation tool targeting the development of the H-mode pedestal at the plasma edge in tokamaks and the triggering and dynamics of edge localized modes (ELMs) is presented in this report. This tool brings together, in a coordinated and effective manner, several first-principles physics simulation codes, stability analysis packages, and data processing and visualization tools. A Kepler workflow is used in order to carry out an edge plasma simulation that loosely couples the kinetic code, XGC0, with an ideal MHD linear stability analysis code, ELITE, and an extended MHD initial value code such as M3D or NIMROD. XGC0 includes the neoclassical ion-electron-neutral dynamics needed to simulate pedestal growth near the separatrix. The Kepler workflow processes the XGC0 simulation results into simple images that can be selected and displayed via the Dashboard, a monitoring tool implemented in AJAX allowing the scientist to track computational resources, examine running and archived jobs, and view key physics data, all within a standard Web browser. The XGC0 simulation is monitored for the conditions needed to trigger an ELM crash by periodically assessing the edge plasma pressure and current density profiles using the ELITE code. If an ELM crash is triggered, the Kepler workflow launches the M3D code on a moderate-size Opteron cluster to simulate the nonlinear ELM crash and to compute the relaxation of plasma profiles after the crash. This process is monitored through periodic outputs of plasma fluid quantities that are automatically visualized with AVS/Express and may be displayed on the Dashboard. Finally, the Kepler workflow archives all data outputs and processed images using HPSS, as well as provenance information about the software and hardware used to create the simulation. The complete process of preparing, executing and monitoring a coupled-code simulation of the edge pressure pedestal buildup and the ELM cycle using the Kepler scientific workflow system is described in this paper
- …
