97 research outputs found

    Changes in substrate availability drive carbon cycle response to chronic warming

    Get PDF
    As earth\u27s climate continues to warm, it is important to understand how the capacity of terrestrial ecosystems to retain carbon (C) will be affected. We combined measurements of microbial activity with the concentration, quality, and physical accessibility of soil carbon to microorganisms to evaluate the mechanisms by which more than two decades of experimental warming has altered the carbon cycle in a Northeast US temperate deciduous forest. We found that concentrations of soil organic matter were reduced in both the organic and mineral soil horizons. The molecular composition of the carbon was altered in the mineral soil with significant reductions in the relative abundance of polysaccharides and lignin, and an increase in lipids. Mineral-associated organic matter was preferentially depleted by warming in the top 3 cm of mineral soil. We found that potential extracellularenzyme activity per gram of soil at a common temperature was generally unaffected by warming treatment. However, by measuring potential extracellular enzyme activities between 4 and 30 °C, we found that activity per unit microbial biomass at in-situ temperatures was increased by warming. This was associated with a tendency for microbial biomass to decrease with warming. These results indicate that chronic warming has reduced soil organic matter concentrations, selecting for a smaller but more active microbial community increasingly dependent on mineral-associated organic matter

    The transcriptional response of soil bacteria to long-term warming and short-term seasonal fluctuations in a terrestrial forest

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chowdhury, P. R., Golas, S. M., Alteio, L., Stevens, J. T. E., Billings, A. F., Blanchard, J. L., Melillo, J. M., & DeAngelis, K. M. The transcriptional response of soil bacteria to long-term warming and short-term seasonal fluctuations in a terrestrial forest. Frontiers in Microbiology, 12, (2021): 666558, https://doi.org/10.3389/fmicb.2021.666558.Terrestrial ecosystems are an important carbon store, and this carbon is vulnerable to microbial degradation with climate warming. After 30 years of experimental warming, carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, as was the warming treatment effect. We therefore hypothesized that long-term warming will have higher expressions of genes related to carbohydrate and lipid metabolism due to increased utilization of recalcitrant carbon pools compared to controls. Because of the seasonal effect of soil respiration and the warming treatment, we further hypothesized that these patterns will be seasonal. We used RNA sequencing to show how the microbial community responds to long-term warming (~30 years) in Harvard Forest, MA. Total RNA was extracted from mineral and organic soil types from two treatment plots (+5°C heated and ambient control), at two time points (June and October) and sequenced using Illumina NextSeq technology. Treatment had a larger effect size on KEGG annotated transcripts than on CAZymes, while soil types more strongly affected CAZymes than KEGG annotated transcripts, though effect sizes overall were small. Although, warming showed a small effect on overall CAZymes expression, several carbohydrate-associated enzymes showed increased expression in heated soils (~68% of all differentially expressed transcripts). Further, exploratory analysis using an unconstrained method showed increased abundances of enzymes related to polysaccharide and lipid metabolism and decomposition in heated soils. Compared to long-term warming, we detected a relatively small effect of seasonal variation on community gene expression. Together, these results indicate that the higher carbohydrate degrading potential of bacteria in heated plots can possibly accelerate a self-reinforcing carbon cycle-temperature feedback in a warming climate.Funding for this study was provided by the Department of Energy Terrestrial Ecosystem Sciences program under contract number DE-SC0010740. Sites for sample collection were maintained with funding in part from the National Science Foundation (NSF) Long-Term Ecological Research (DEB 1237491) and the NSF Long-Term Research in Environmental Biology (DEB 1456528) programs

    Two decades of warming increases diversity of a potentially lignolytic bacterial community

    Get PDF
    As Earth\u27s climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community\u27s capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming

    Season, not long-term warming, affects the relationship between ecosystem function and microbial diversity

    Get PDF
    Across biomes, soil biodiversity promotes ecosystem functions. However, whether this relationship will be maintained under climate change is uncertain. Here, using two long-term warming experiments, we investigated how warming affects the relationship between ecosystem functions and microbial diversity across seasons, soil horizons, and warming duration. The soils in these warming experiments were heated +5 °C above ambient for 13 or 28 years. We measured seven different ecosystem functions representative of soil carbon cycling, soil nitrogen cycling, or nutrient pools. We also surveyed bacterial and fungal community diversity. We found that the relationship between ecosystem function and bacterial diversity and the relationship between ecosystem function and fungal diversity was unaffected by warming or warming duration. Ecosystem function, however, was significantly affected by season, with autumn samples having higher function than summer samples. Our findings further emphasize that season is a consistent driver of ecosystem function and that this is maintained even under simulated climate change

    Application of phenotypic microarrays to environmental microbiology

    Get PDF
    Environmental organisms are extremely diverse and only a small fraction has been successfully cultured in the laboratory. Culture in micro wells provides a method for rapid screening of a wide variety of growth conditions and commercially available plates contain a large number of substrates, nutrient sources, and inhibitors, which can provide an assessment of the phenotype of an organism. This review describes applications of phenotype arrays to anaerobic and thermophilic microorganisms, use of the plates in stress response studies, in development of culture media for newly discovered strains, and for assessment of phenotype of environmental communities. Also discussed are considerations and challenges in data interpretation and visualization, including data normalization, statistics, and curve fitting

    Microbial diversity drives carbon use efficiency in a model soil

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Domeignoz-Horta, L. A., Pold, G., Liu, X. A., Frey, S. D., Melillo, J. M., & DeAngelis, K. M. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 11(1), (2020): 3684, doi:10.1038/s41467-020-17502-z.Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combine distinct community inocula (a biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil. While community composition and diversity are the strongest predictors of CUE, abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity only under high moisture. Altogether these results indicate that the diversity × ecosystem-function relationship can be impaired under non-favorable conditions in soils, and that to understand changes in soil C cycling we need to account for the multiple facets of global changes.Funding for this project was provided by the Department of Energy grant DE-SC0016590 to K.M.D. and S.D.F., and an American Association of University Women Dissertation fellowship to G.P. We would also like to thank Stuart Grandy and Kevin Geyer for the fruitful discussions and Mary Waters, Courtney Bly and Ana Horta for their help with samples processing
    • …
    corecore