124 research outputs found
Limited domestic introgression in a final refuge of the wild pigeon
Domesticated animals have been culturally and economically important
throughout history. Many of their ancestral lineages are extinct or genetically en dangered following hybridization with domesticated relatives. Consequently,
they have been understudied compared to the ancestral lineages of domestic
plants. The domestic pigeon Columba livia, which was pivotal in Darwin’s studies,
has maintained outsized cultural significance. Its role as a model organism spans
the fields of behavior, genetics, and evolution. Domestic pigeons have hybridized
with their progenitor, the Rock Dove, rendering the latter of dubious genetic sta tus. Here, we use genomic and morphological data from the putative Rock Doves
of the British Isles to identify relictual undomesticated populations. We reveal
that Outer Hebridean Rock Doves have experienced minimal levels of introgres sion. Our results outline the contemporary status of these wild pigeons, high lighting the role of hybridization in the homogenization of genetic lineages.publishedVersio
Human CLEC9A antibodies deliver Wilms' tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naïve and memory WT1‐specific CD8+ T cells
Objectives
Vaccines that prime Wilms' tumor 1 (WT1)‐specific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The C‐type lectin‐like receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ T‐cell responses. We developed a new vaccine comprising a human anti‐CLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naïve and memory WT1‐specific CD8+ T cells.
Methods
WT1 was genetically fused to antibodies specific for human CLEC9A, DEC‐205 or β‐galactosidase (untargeted control). Activation of WT1‐specific CD8+ T‐cell lines following cross‐presentation by CD141+ DCs was quantified by IFNγ ELISPOT. Humanised mice reconstituted with human immune cell subsets, including a repertoire of naïve WT1‐specific CD8+ T cells, were used to investigate naïve WT1‐specific CD8+ T‐cell priming.
Results
The CLEC9A‐WT1 vaccine promoted cross‐presentation of WT1 epitopes to CD8+ T cells and mediated priming of naïve CD8+ T cells more effectively than the DEC‐205‐WT1 and untargeted control‐WT1 vaccines.
Conclusions
Delivery of WT1 to CD141+ DCs via CLEC9A stimulates CD8+ T cells more potently than either untargeted delivery or widespread delivery to all Ag‐presenting cells via DEC‐205, suggesting that cross‐presentation by CD141+ DCs is sufficient for effective CD8+ T‐cell priming in humans. The CLEC9A‐WT1 vaccine is a promising candidate immunotherapy for malignancies that express WT1
Period and chemical evolution of SC stars
The SC and CS stars are thermal-pulsing AGB stars with C/O ratio close to
unity. Within this small group, the Mira variable BH Cru recently evolved from
spectral type SC (showing ZrO bands) to CS (showing weak C2). Wavelet analysis
shows that the spectral evolution was accompanied by a dramatic period
increase, from 420 to 540 days, indicating an expanding radius. The pulsation
amplitude also increased. Old photographic plates are used to establish that
the period before 1940 was around 490 days. Chemical models indicate that the
spectral changes were caused by a decrease in stellar temperature, related to
the increasing radius. There is no evidence for a change in C/O ratio. The
evolution in BH Cru is unlikely to be related to an on-going thermal pulse.
Periods of the other SC and CS stars, including nine new periods, are
determined. A second SC star, LX Cyg, also shows evidence for a large increase
in period, and one further star shows a period inconsistent with a previous
determination. Mira periods may be intrinsically unstable for C/O ~ 1; possibly
because of a feedback between the molecular opacities, pulsation amplitude, and
period. LRS spectra of 6 SC stars suggest a feature at wavelength > 15 micron,
which resembles one recently attributed to the iron-sulfide troilite. Chemical
models predict a large abundance of FeS in SC stars, in agreement with the
proposed association.Comment: 14 pages, 20 figures. MNRAS, 2004, accepted for publication. Janet
Mattei, one of the authors, died on 22 March, 2004. This paper is dedicated
to her memor
Mitochondrial Hâ‚‚Oâ‚‚ emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
High dietary fat intake leads to insulin resistance in skeletal muscle, and this represents a major risk factor for type 2 diabetes and cardiovascular disease. Mitochondrial dysfunction and oxidative stress have been implicated in the disease process, but the underlying mechanisms are still unknown. Here we show that in skeletal muscle of both rodents and humans, a diet high in fat increases the Hâ‚‚Oâ‚‚-emitting potential of mitochondria, shifts the cellular redox environment to a more oxidized state, and decreases the redox-buffering capacity in the absence of any change in mitochondrial respiratory function. Furthermore, we show that attenuating mitochondrial Hâ‚‚Oâ‚‚ emission, either by treating rats with a mitochondrial-targeted antioxidant or by genetically engineering the overexpression of catalase in mitochondria of muscle in mice, completely preserves insulin sensitivity despite a high-fat diet. These findings place the etiology of insulin resistance in the context of mitochondrial bioenergetics by demonstrating that mitochondrial Hâ‚‚Oâ‚‚ emission serves as both a gauge of energy balance and a regulator of cellular redox environment, linking intracellular metabolic balance to the control of insulin sensitivity. Original version available at http://www.jci.org/articles/view/3704
The morbidity and mortality following a diagnosis of peripheral arterial disease: Long-term follow-up of a large database
BACKGROUND: Awareness of the significance of peripheral arterial disease is increasing, but quantitative estimates of the ensuing burden and the impact of other risk factors remains limited. The objective of this study was to fill this need. METHODS: Morbidity and mortality were examined in 16,440 index patients diagnosed with peripheral arterial disease in Saskatchewan, Canada between 1985 and 1995. Medical history and patient characteristics were available retrospectively to January 1980 and follow-up was complete to March 1998. Crude and adjusted event rates were calculated and Kaplan-Meier survival curves estimated. Cox proportional hazards analyses were conducted to examine the effect of risk factors on these rates. Patients suffering a myocardial infarction or ischemic stroke in Saskatchewan provided two reference populations. RESULTS: Half of the index patients were male; the majority was over age 65; 73% had at least one additional risk factor at index diagnosis; 10% suffered a subsequent stroke, another 10% a myocardial infarction, and 49% died within the mean follow-up of 5.9 years. Annual mortality (8.2%) was higher among patients with PAD than after a myocardial infarction (6.3%) but slightly lower than that in patients suffering a stroke (11.3%). Index patients with comorbid disease (e.g., diabetes) were at highest risk of death and other events. CONCLUSION: A diagnosis of peripheral arterial disease is critical evidence of more widespread atherothrombotic disease, with substantial risks of subsequent cardiovascular events and death. Given that the majority has additional comorbidities, these risks are further increased
T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex
Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iTreg) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iTreg TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition
Introduced Pathogens and Native Freshwater Biodiversity: A Case Study of Sphaerothecum destruens
A recent threat to European fish diversity was attributed to the association between an intracellular parasite, Sphaerothecum destruens, and a healthy freshwater fish carrier, the invasive Pseudorasbora parva originating from China. The pathogen was found to be responsible for the decline and local extinction of the European endangered cyprinid Leucaspius delineatus and high mortalities in stocks of Chinook and Atlantic salmon in the USA. Here, we show that the emerging S. destruens is also a threat to a wider range of freshwater fish than originally suspected such as bream, common carp, and roach. This is a true generalist as an analysis of susceptible hosts shows that S. destruens is not limited to a phylogenetically narrow host spectrum. This disease agent is a threat to fish biodiversity as it can amplify within multiple hosts and cause high mortalities
Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial
Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1–seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen
Meta-Analysis of the Alzheimer\u27s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models.
We present a consensus atlas of the human brain transcriptome in Alzheimer\u27s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington\u27s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies
- …